Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (6) : 6    https://doi.org/10.1007/s11783-018-1048-5
RESEARCH ARTICLE
Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism
Qinqin Liu1,2, Miao Li1(), Xiang Liu1, Quan Zhang1, Rui Liu1, Zhenglu Wang3, Xueting Shi4, Jin Quan5, Xuhui Shen2, Fawang Zhang6
1. School of Environment, Tsinghua University, Beijing 100084, China
2. The Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
3. The College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
4. Appraisal Center for Environment & Engineering Ministry of Environmental Protection, Beijing 100012, China
5. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research (IWHR), Beijing 100038, China
6. Chinese Academy of Geological Sciences, Beijing 100037, China
 Download: PDF(330 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The artificial composite soil treatment system could efficiently remove SMX and TMP by biodegradation mechanism.

Bacillus subtilis from column reactors degraded SMX and TMP efficiently.

Bacillus subtilis biodegrades TMP to NH4+, and then converts NH4+ to NO3.

Sulfamethoxazole (SMX) and trimethoprim (TMP) are two critical sulfonamide antibiotics with enhanced persistency that are commonly found in wastewater treatment plants. Recently, more scholars have showed interests in how SMX and TMP antibiotics are biodegraded, which is seldom reported previously. Novel artificial composite soil treatment systems were designed to allow biodegradation to effectively remove adsorbed SMX and TMP from the surface of clay ceramsites. A synergy between sorption and biodegradation improves the removal of SMX and TMP. One highly efficient SMX and TMP degrading bacteria strain, Bacillus subtilis, was isolated from column reactors. In the removal process, this bacteria degrade SMX and TMP to NH4+, and then further convert NH4+ to NO3 in a continuous process. Microbial adaptation time was longer for SMX degradation than for TMP, and SMX was also able to be degraded in aerobic conditions. Importantly, the artificial composite soil treatment system is suitable for application in practical engineering.

Keywords Trimethoprim      Sulfamethoxazole      Biodegradation      Aerobic nitrification     
Corresponding Author(s): Miao Li   
Issue Date: 19 August 2018
 Cite this article:   
Qinqin Liu,Miao Li,Xiang Liu, et al. Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism[J]. Front. Environ. Sci. Eng., 2018, 12(6): 6.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1048-5
https://academic.hep.com.cn/fese/EN/Y2018/V12/I6/6
Fig.1  Schematic diagram of the artificial composite soil column. The values are given in millimeter
Column codes Column 1 Column 2 Column 3
The adsorption and biodegradation layer Volcanics: silty clay: coarse medium sands v:v:v=5:5:1 silty clay: coarse medium sands v:v=10:1 silty clay: coarse medium sands v:v=10:1 (200 mg/L NaN3)
The adsorption layer clay ceramsites clay ceramsites clay ceramsites
The supporting of layer cobblestones cobblestones cobblestones
0.01 mol/L CaCl2 deionized solutions 10 d 10 d 10 d
20–30 µg/L SMX and TMP reclaimed water solutions 60 d 60 d 60 d
Tab.1  The experimental scheme of reclaimed water recharge experiment
Fig.2  The variation of SMX and TMP influent and effluent concentrations. Y represents the influent of columns 1, 2 and 3. Columns 1, 2 and 3 represent the effluent of columns 1, 2, and 3, respectively
Fig.3  The variation of NH4+, NO2 and NO3 influent and effluent concentrations. Y represents the influent of columns 1, 2 and 3. Columns 1, 2 and 3 represent the effluent of columns 1, 2, and 3, respectively
Effluent concentration Column 1 Column 3 Column 5
NH4+-N (83 d) 15.62 11.52 1.84
NH4+-N (85 d) 9.16 6.87 1.68
NH4+-N (87 d) 1.13 1.36 0.92
NO3-N (83 d) 10.62 10.52 2.54
NO3-N (85 d) 8.16 8.87 3.68
NO3-N (87 d) 4.01 3.98 3.07
Tab.2  The high NH4+-N and NO3-N effluent concentration result
Fig.4  The variation of DO influent and effluent concentrations. Y represents the influent of columns 1 and 2. Columns 1 and 2 represent the effluent of columns 1 and 2, respectively
Fig.5  The variation of SMX influent and effluent concentrations in additional experiment. Y represents the influent of columns 1 and 2. Columns 1 and 2 represent the effluent of columns 1 and 2, respectively
Closest species Accession numbers Identity (%)
Bacillus subtilis KX953869.1 99
Tab.3  The result of identification for SMX and TMP resistant bacteria in artificial composite soil treatment columns
1 Alexy R, Kümpel T, Kümmerer K (2004). Assessment of degradation of 18 antibiotics in the Closed Bottle Test. Chemosphere, 57(6): 505–512
https://doi.org/10.1016/j.chemosphere.2004.06.024 pmid: 15350412
2 Association APH (1960). Standard Methods for the Examination of Water and Waste-Water including Bottom Sediments and Sludges 11th Ed. Maryland: United Book Press
3 Ávila C, García J (2015). Pharmaceuticals and Personal Care Products (PPCPs) in the Environment and Their Removal from Wastewater through Constructed Wetlands, Elsevier Science & Technology, 195–244
4 Batt A L, Kim S, Aga D S (2006). Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge. Environmental Science Technology, 40(23): 7367–7373
https://doi.org/10.1021/es060835v pmid: 17180990
5 Baumgarten B, Jährig J, Reemtsma T, Jekel M (2011). Long term laboratory column experiments to simulate bank filtration: Factors controlling removal of sulfamethoxazole. Water Research, 45(1): 211–220
https://doi.org/10.1016/j.watres.2010.08.034 pmid: 20828781
6 Benotti M J, Brownawell B J (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3): 994–1002
https://doi.org/10.1016/j.envpol.2008.10.009 pmid: 19038482
7 Buser H R, Thomas Poiger A, Müller M D (1998). Occurrence and fate of the pharmaceutical drug diclofenac in surface waters: Rapid photodegradation in a lake. Environmental Science Technology, 32(22): 3449–3456
https://doi.org/10.1021/es980301x
8 Chen G, Li M, Liu X (2015). Fluoroquinolone antibacterial agent contaminants in soil/groundwater: A literature review of sources, fate, and occurrence. Water Air Soil Pollution, 226(12): 418
https://doi.org/10.1007/s11270-015-2438-y
9 Choi Y S, Hong S W, Kim S J, Chung I H (2002). Development of a biological process for livestock wastewater treatment using a technique for predominant outgrowth of Bacillus species. Water Science Technology, 45(12): 71–78
pmid: 12201129
10 Eichhorn P, Ferguson P L, Pérez S, Aga D S (2005). Application of ion trap-MS with H/D exchange and QqTOF-MS in the identification of microbial degradates of trimethoprim in nitrifying activated sludge. Analytical Chemistry, 77(13): 4176–4184
https://doi.org/10.1021/ac050141p pmid: 15987124
11 Göbel A, Thomsen A, McArdell C S, Joss A, Giger W (2005). Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science Technology, 39(11): 3981–3989
https://doi.org/10.1021/es048550a pmid: 15984773
12 Grünheid S, Amy G, Jekel M (2005). Removal of bulk dissolved organic carbon (DOC) and trace organic compounds by bank filtration and artificial recharge. Water Research, 39(14): 3219–3228
https://doi.org/10.1016/j.watres.2005.05.030 pmid: 16024062
13 Gulkowska A, Leung H W, So M K, Taniyasu S, Yamashita N, Yeung L W Y, Richardson B J, Lei A P, Giesy J P, Lam P K S (2008). Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China. Water Research, 42(1-2): 395–403
https://doi.org/10.1016/j.watres.2007.07.031 pmid: 17706267
14 Heberer T, Massmann G, Fanck B, Taute T, Dünnbier U (2008). Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere, 73(4): 451–460
https://doi.org/10.1016/j.chemosphere.2008.06.056 pmid: 18752833
15 Hernández F, Sancho J V, Ibáñez M, Guerrero C (2007). Antibiotic residue determination in environmental waters by LC-MS. TrAC Trends in Analytical Chemistry, 26(6): 466–485
https://doi.org/10.1016/j.trac.2007.01.012
16 Hijosa-Valsero M, Fink G, Schlüsener M P, Sidrach-Cardona R, Martín-Villacorta J, Ternes T, Bécares E (2011). Removal of antibiotics from urban wastewater by constructed wetland optimization. Chemosphere, 83(5): 713–719
https://doi.org/10.1016/j.chemosphere.2011.02.004 pmid: 21356542
17 Jiang X, Ma M, Li J, Lu A, Zhong Z (2011). Analysis of microbial molecular ecology techniques in constructed Rapid Infiltration system. Journal of Earth Sciences, 22(5): 669–676
https://doi.org/10.1007/s12583-011-0218-1
18 Kim J K, Park K J, Cho K S, Nam S W, Park T J, Bajpai R (2005). Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96(17): 1897–1906
https://doi.org/10.1016/j.biortech.2005.01.040 pmid: 16084369
19 Kleywegt S, Pileggi V, Yang P, Hao C, Zhao X, Rocks C, Thach S, Cheung P, Whitehead B (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—Occurrence and treatment efficiency. Science of the Total Environment, 409(8): 1481–1488
https://doi.org/10.1016/j.scitotenv.2011.01.010 pmid: 21315426
20 Li B, Zhang T (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science Technology, 44(9): 3468–3473
https://doi.org/10.1021/es903490h pmid: 20384353
21 Liu Q, Li M, Zhang F, Yu H, Zhang Q, Liu X (2017a). The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system. Frontiers of Environmental Science & Engineering, 11(2): 12
22 Liu Q, Li M, Zhang F, Yu H, Zhang Q, Liu X (2017b). Study of the hydrogeochemical processes during enhanced trimethoprim and sulfamethoxazole removal in artificial composite soil treatment system. Desalination Water Treatment, 85: 120–131
https://doi.org/10.5004/dwt.2017.21104
23 Loos R, Carvalho R, António D C, Comero S, Locoro G, Tavazzi S, Paracchini B, Ghiani M, Lettieri T, Blaha L, Jarosova B, Voorspoels S, Servaes K, Haglund P, Fick J, Lindberg R H, Schwesig D, Gawlik B M (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17): 6475–6487
https://doi.org/10.1016/j.watres.2013.08.024 pmid: 24091184
24 Mojica E R E, Aga D S (2011). Antibiotics Pollution in Soil and Water: Potential Ecological and Human Health Issues. In Encyclopedia of Environmental Health. Nriagu J O ed.. Burlington: Elsevier, 97–110
25 Pal A, Gin K Y, Lin A Y, Reinhard M (2010). Impacts of emerging organic contaminants on fresh water resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24): 6062–6069
https://doi.org/10.1016/j.scitotenv.2010.09.026 pmid: 20934204
26 Pan M, Chu L M (2016). Adsorption and degradation of five selected antibiotics in agricultural soil. Science of the Total Environment, 545-546: 48–56
https://doi.org/10.1016/j.scitotenv.2015.12.040 pmid: 26745292
27 Pérez S, Eichhorn P, Aga D S (2005). Evaluating the biodegradability of sulfamethazine, sulfamethoxazole, sulfathiazole, and trimethoprim at different stages of sewage treatment. Environ Toxicol Chem, 24(6): 1361–1367
https://doi.org/10.1897/04-211R.1 pmid: 16117111
28 Stackelberg P E, Furlong E T, Meyer M T, Zaugg S D, Henderson A K, Reissman D B (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Science of the Total Environment, 329(1-3): 99–113
https://doi.org/10.1016/j.scitotenv.2004.03.015 pmid: 15262161
29 Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G (2015). Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review. Emerging Contaminants, 1(1): 14–24
https://doi.org/10.1016/j.emcon.2015.07.001
30 Taylor R H, Geldreich E E (1983). Standard plate count: A comparison of pour plate and spread plate methods. Journal- American Water Works Association, 75(1): 35–37
https://doi.org/10.1002/j.1551-8833.1983.tb05055.x
31 Verlicchi P, Al Aukidy M, Zambello E (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review. Science of the Total Environment, 429: 123–155
https://doi.org/10.1016/j.scitotenv.2012.04.028 pmid: 22583809
32 Vulliet E, Cren-Olivé C (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10): 2929–2934
https://doi.org/10.1016/j.envpol.2011.04.033 pmid: 21570166
33 Vymazal J, Březinová T, Koželuh M (2015). Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Science of the Total Environment, 536: 625–631
https://doi.org/10.1016/j.scitotenv.2015.07.077 pmid: 26247691
34 Weiss W J, Speth T F (2003). riverbank filtration- fate of DBP precursors and selected microorganisms. Journal- American Water Works Association, 95(10): 68–81
https://doi.org/10.1002/j.1551-8833.2003.tb10475.x
35 Westerhoff P, Yoon Y, Snyder S, Wert E (2005). Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science Technology, 39(17): 6649–6663
https://doi.org/10.1021/es0484799 pmid: 16190224
36 Xu B, Mao D, Luo Y, Xu L (2011). Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Bioresource Technology, 102(14): 7069–7076
https://doi.org/10.1016/j.biortech.2011.04.086 pmid: 21596556
37 Xu W, Zhang G, Li X, Zou S, Li P, Hu Z, Li J (2007). Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41(19): 4526–4534
https://doi.org/10.1016/j.watres.2007.06.023 pmid: 17631935
38 Ziylan A, Ince N H (2011). The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187(1-3): 24–36
https://doi.org/10.1016/j.jhazmat.2011.01.057 pmid: 21315511
[1] FSE-18017-OF-LQQ_suppl_1 Download
[1] Xinshu Liu, Xiaoman Su, Sijie Tian, Yue Li, Rongfang Yuan. Mechanisms for simultaneous ozonation of sulfamethoxazole and natural organic matters in secondary effluent from sewage treatment plant[J]. Front. Environ. Sci. Eng., 2021, 15(4): 75-.
[2] Paul Olusegun Bankole, Kirk Taylor Semple, Byong-Hun Jeon, Sanjay Prabhu Govindwar. Enhanced enzymatic removal of anthracene by the mangrove soil-derived fungus, Aspergillus sydowii BPOI[J]. Front. Environ. Sci. Eng., 2020, 14(6): 113-.
[3] Yiquan Wu, Ying Xu, Ningyi Zhou. A newly defined dioxygenase system from Mycobacterium vanbaalenii PYR-1 endowed with an enhanced activity of dihydroxylation of high-molecular-weight polyaromatic hydrocarbons[J]. Front. Environ. Sci. Eng., 2020, 14(1): 14-.
[4] Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang. Pollution and biodegradation of hexabromocyclododecanes: A review[J]. Front. Environ. Sci. Eng., 2020, 14(1): 11-.
[5] Bin Liang, Deyong Kong, Mengyuan Qi, Hui Yun, Zhiling Li, Ke Shi, E Chen, Alisa S. Vangnai, Aijie Wang. Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor[J]. Front. Environ. Sci. Eng., 2019, 13(6): 84-.
[6] Zuotao Zhang, Chongyang Wang, Jianzhong He, Hui Wang. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways[J]. Front. Environ. Sci. Eng., 2019, 13(5): 80-.
[7] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[8] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[9] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[10] Shunan Shan, Yuting Zhang, Yining Zhang, Lanjun Hui, Wen Shi, Yongming Zhang, Bruce E. Rittmann. Comparison of sequential with intimate coupling of photolysis and biodegradation for benzotriazole[J]. Front. Environ. Sci. Eng., 2017, 11(6): 8-.
[11] Qinqin Liu, Miao Li, Fawang Zhang, Hechun Yu, Quan Zhang, Xiang Liu. The removal of trimethoprim and sulfamethoxazole by a high infiltration rate artificial composite soil treatment system[J]. Front. Environ. Sci. Eng., 2017, 11(2): 12-.
[12] Wei-Min Wu,Jun Yang,Craig S. Criddle. Microplastics pollution and reduction strategies[J]. Front. Environ. Sci. Eng., 2017, 11(1): 6-.
[13] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[14] Ning YAN,Lu WANG,Ling CHANG,Cuiyi ZHANG,Yang ZHOU,Yongming ZHANG,Bruce E. RITTMANN. Coupled aerobic and anoxic biodegradation for quinoline and nitrogen removals[J]. Front. Environ. Sci. Eng., 2015, 9(4): 738-744.
[15] ZHANG Dong,ZHU Lizhong. Controlling microbiological interfacial behaviors of hydrophobic organic compounds by surfactants in biodegradation process[J]. Front.Environ.Sci.Eng., 2014, 8(3): 305-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed