Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (1) : 11    https://doi.org/10.1007/s11783-019-1096-5
RESEARCH ARTICLE
Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2
Giovanni Cagnetta1, Kunlun Zhang1, Qiwu Zhang2, Jun Huang1(), Gang Yu1
1. State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), Beijing Key Laboratory of Emerging Organic Contaminants Control (BKLEOCC), School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China
2. School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
 Download: PDF(757 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

PE ball milling pretreatment induces higher H2 production and purity by gasification.

Ca(OH)2 reacts at solid state with PE boosting H2 and capturing CO2.

Ca(OH)2 significantly reduces methanation side-reaction.

Polymer thermal recycling for hydrogen production is a promising process to recover such precious element from plastic waste. In the present work a simple but efficacious high energy milling pre-treatment is proposed to boost H2 generation during polyethylene gasification. The polymer is co-milled with calcium and nickel hydroxides and then it is subjected to thermal treatment. Results demonstrate the key role played by the calcium hydroxide that significantly ameliorates hydrogen production. It reacts in solid state with the polyethylene to form directly carbonate and hydrogen. In this way, the CO2 is immediately captured in solid form, thus shifting the equilibrium toward H2 generation and obtaining high production rate (>25 L/mol CH2). In addition, high amounts of the hydroxide prevent excessive methane formation, so the gas product is almost pure hydrogen (~95%).

Keywords Hydrogen production      Gasification      Plastic waste      High energy ball milling     
Corresponding Author(s): Jun Huang   
Issue Date: 18 December 2018
 Cite this article:   
Giovanni Cagnetta,Kunlun Zhang,Qiwu Zhang, et al. Augmented hydrogen production by gasification of ball milled polyethylene with Ca(OH)2 and Ni(OH)2[J]. Front. Environ. Sci. Eng., 2019, 13(1): 11.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1096-5
https://academic.hep.com.cn/fese/EN/Y2019/V13/I1/11
Fig.1  Gas generation from milled PE with various reagent molar ratios (PE:Ca(OH)2:Ni(OH)2), obtained by TG-MS analysis.
Fig.2  Gas generation volume (a) and molar composition (b) from the gasification batch tests of milled PE with different molar PE:Ca(OH)2:Ni(OH)2 ratios.
Fig.3  XRD diffractograms of solid residue after gasification batch tests at 350°C of PE with various reagent molar ratios (PE:Ca(OH)2:Ni(OH)2).
Fig.4  Raman spectra of solid residue after the gasification batch tests at 350°C of PE with various reagent molar ratios (PE:Ca(OH)2:Ni(OH)2).
Compound PE:Ca(OH)2:Ni(OH)2 = 6:1:1
Atomic amount (mmol)
PE:Ca(OH)2:Ni(OH)2 = 6:3:1
Atomic amount (mmol)
PE:Ca(OH)2:Ni(OH)2 = 6:6:1
Atomic amount (mmol)
C H Ca Ni C H Ca Ni C H Ca Ni
Reagents PE 160.7 321.4 128.6 257.1 98.9 197.8
Ca(OH)2 10.1 5.1 24.3 12.1 37.4 18.7
Ni(OH)2 8.1 4.0 6.5 3.2 5.0 2.5
Products H2 29.3 44.8 65.1
CH4 8.6 34.2 8.6 34.6 4.3 17.5
CO 0.1 0.1 0.1
CO2 0.1 0.1 0.1
Others* 2.1 4.2 2.6 5.2 2.4 4.8
CaCO3 5.0 5.0 11.5 11.5 14.8 14.8
CaO 0.7 0.4 3.8
Ni 4.0 3.4 2.6
Char 0.0 0.1 0.0
Discrepancy
(reagents ? products)
144.8 271.9 -0.6 0.0 105.6 203.3 0.2 -0.2 77.2 152.8 0.1 -0.1
Tab.1  Molar balance for milling-gasification experiments with different PE:Ca(OH)2:Ni(OH)2 ratios
Fig.5  Volumetric production and molar composition of gaseous product during the gasification batch test at various temperatures, with PE:Ca(OH)2:Ni(OH)2=6:3:1.
Temperature ξ1 (mol) ξ2 (mol) ξ2 /( ξ1+ξ2)) (mol)
350°C 0.0371 0.1371 78.70
400°C 0.0446 0.1384 75.63
450°C 0.0453 0.1385 75.35
500°C 0.0554 0.1402 71.70
550°C 0.0591 0.1409 70.44
Tab.2  Molar extents of reactions (1) and (2)
1 S MAl-Salem, P Lettieri, JBaeyens (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management (New York, N.Y.), 29(10): 2625–2643
https://doi.org/10.1016/j.wasman.2009.06.004 pmid: 19577459
2 JAlvarez, S Kumagai, CWu, TYoshioka, JBilbao, MOlazar, P TWilliams (2014). Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. International Journal of Hydrogen Energy, 39(21): 10883–10891
https://doi.org/10.1016/j.ijhydene.2014.04.189
3 PBaláž (2008). Mechanochemistry in Nanoscience and Minerals Engineering. Berlin: Springer-Verlag Berlin Heidelberg
4 YBicer, I Dincer (2017). Life cycle evaluation of hydrogen and other potential fuels for aircrafts. International Journal of Hydrogen Energy, 42(16): 10722–10738
https://doi.org/10.1016/j.ijhydene.2016.12.119
5 V VBoldyrev (2006). Mechanochemistry and mechanical activation of solids. Russian Chemical Reviews, 75(3): 177–189
https://doi.org/10.1070/RC2006v075n03ABEH001205
6 V VBoldyrev, K Tkáčová (2000). Mechanochemistry of solids: Past, present, and prospects. Journal of Materials Synthesis and Processing, 8(3/4): 121–132
https://doi.org/10.1023/A:1011347706721
7 GCagnetta, J Huang, GYu (2018a). A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale. Critical Reviews in Environmental Science and Technology, 167: 1–49
https://doi.org/10.1080/10643389.2018.1493336
8 GCagnetta, J Robertson, JHuang, KZhang, GYu (2016). Mechanochemical destruction of halogenated organic pollutants: A critical review. Journal of Hazardous Materials, 313: 85–102
https://doi.org/10.1016/j.jhazmat.2016.03.076 pmid: 27054668
9 GCagnetta, K Zhang, QZhang, JHuang and GYu (2018b). Mechanochemical pre-treatment for viable recycling of plastic waste containing haloorganics. Waste Management. 75181–186
10 F EChakik, M Kaddami, MMikou (2017). Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy, 42(40): 25550–25557
https://doi.org/10.1016/j.ijhydene.2017.07.015
11 A MDubinskaya (1999). Transformations of organic compounds under the action of mechanical stress. Russian Chemical Reviews, 68(8): 637–652
https://doi.org/10.1070/RC1999v068n08ABEH000435
12 JFavas, E Monteiro, ARouboa (2017). Hydrogen production using plasma gasification with steam injection. International Journal of Hydrogen Energy, 42(16): 10997–11005
https://doi.org/10.1016/j.ijhydene.2017.03.109
13 E LFokina, N I Budim, V G Kochnev, G G Chernik (2004). Planetary mills of periodic and continuous action. Journal of Materials Science, 39(16/17): 395217–395221
https://doi.org/10.1023/B:JMSC.0000039213.44891.7d
14 MHe, B Xiao, ZHu, SLiu, X Guo, SLuo (2009). Syngas production from catalytic gasification of waste polyethylene: Influence of temperature on gas yield and composition. International Journal of Hydrogen Energy, 34(3): 1342–1348
https://doi.org/10.1016/j.ijhydene.2008.12.023
15 IPCC (2013). Climate Change 2013. The Physical Science Basis. Available at (accessed 1 September 2017)
16 YIshihara, H Nanbu, KSaido, TIkemura, TTakesue (1992). Mechanism for gas formation in polyethylene catalytic decomposition. Polymer, 33(16): 3482–3486
https://doi.org/10.1016/0032-3861(92)91107-D
17 MLee, L Prewitt, S PMun (2014). Formaldehyde release from medium density fiberboard in simulated landfills for recycling. Journal of the Korean Wood Science and Technology, 42(5): 597–604
https://doi.org/10.5658/WOOD.2014.42.5.597
18 JLi, C Nagamani, J SMoore (2015). Polymer mechanochemistry: from destructive to productive. Accounts of Chemical Research, 48(8): 2181–2190
https://doi.org/10.1021/acs.accounts.5b00184 pmid: 26176627
19 GLopez, M Artetxe, MAmutio, JAlvarez, JBilbao, MOlazar (2018). Recent advances in the gasification of waste plastics: A critical overview. Renewable & Sustainable Energy Reviews, 82: 82576–82596
https://doi.org/10.1016/j.rser.2017.09.032
20 GLopez, A Erkiaga, MArtetxe, MAmutio, JBilbao, MOlazar (2015). Hydrogen production by high density polyethylene steam gasification and in-line volatile reforming. Industrial & Engineering Chemistry Research, 54(39): 9536–9544
https://doi.org/10.1021/acs.iecr.5b02413
21 MLuo, Y Yi, SWang, ZWang, M Du, JPan, QWang (2017). Review of hydrogen production using chemical-looping technology. Renewable & Sustainable Energy Reviews
22 NMorin, H P H Arp, S E Hale (2015). Bisphenol A in solid waste materials, leachate water, and air particles from norwegian waste-handling facilities: Presence and partitioning behavior. Environmental Science & Technology, 49(13): 7675–7683
https://doi.org/10.1021/acs.est.5b01307 pmid: 26055751
23 BNematollahi, M Rezaei, E NLay, MKhajenoori (2012). Thermodynamic analysis of combined reforming process using Gibbs energy minimization method: In view of solid carbon formation. Journal of Natural Gas Chemistry, 21(6): 694–702
https://doi.org/10.1016/S1003-9953(11)60421-0
24 M KNikoo, N A S Amin (2011). Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, 92(3): 678–691
https://doi.org/10.1016/j.fuproc.2010.11.027
25 ASharma, S K Arya (2017). Hydrogen from algal biomass: A review of production process. Biotechnology Reports (Amsterdam, Netherlands), 15: 63–69
https://doi.org/10.1016/j.btre.2017.06.001 pmid: 28702371
26 PSharma, M L Kolhe (2017). Review of sustainable solar hydrogen production using photon fuel on artificial leaf. International Journal of Hydrogen Energy, 42(36): 22704–22712
https://doi.org/10.1016/j.ijhydene.2017.07.115
27 YShen, R Zhao, JWang, XChen, X Ge, MChen (2016). Waste-to-energy: Dehalogenation of plastic-containing wastes. Waste Management. 49287–303
28 DFPSuffredini, VV Thyssen, PMMde Almeyda, RSGomes, MCBorges (2017). Renewable hydrogen from glycerol reforming over nickel aluminate-based catalysts. Catalysis Today. Discovering new routes for Sustainable Development, 28996–104
29 WTongamp, Q Zhang, FSaito (2008). Hydrogen generation from polyethylene by milling and heating with Ca(OH)2 and Ni(OH)2. International Journal of Hydrogen Energy, 33(15): 4097–4103
https://doi.org/10.1016/j.ijhydene.2008.05.027
30 WTongamp, Q Zhang, FSaito (2009a). Generation of hydrogen gas from polyethylene mechanically milled with Ni-doped layered double hydroxide. Fuel Processing Technology, 90(7–8): 909–913
https://doi.org/10.1016/j.fuproc.2009.01.014
31 WTongamp, Q Zhang, FSaito (2010). Generation of H2 gas from polystyrene and poly(vinyl alcohol) by milling and heating with Ni(OH)2 and Ca(OH)2. Fuel Processing Technology, 91(3): 272–276
https://doi.org/10.1016/j.fuproc.2009.10.008
32 WTongamp, Q Zhang, MShoko, FSaito (2009b). Generation of hydrogen from polyvinyl chloride by milling and heating with CaO and Ni(OH)2. Journal of Hazardous Materials, 167(1–3): 1002–1006
https://doi.org/10.1016/j.jhazmat.2009.01.076 pmid: 19231073
33 KWieczorek-Ciurowa, KGamrat (2007). Mechanochemical syntheses as an example of green processes. Journal of Thermal Analysis and Calorimetry, 88(1): 213–217
https://doi.org/10.1007/s10973-006-8098-9
34 Worldwatch Institute (2015). Global plastic production rises, recycling lags January. Available at (accessed 29 August 2017).
[1] Zhen Wang, Jiazhen Huo, Yongrui Duan. The impact of government incentives and penalties on willingness to recycle plastic waste: An evolutionary game theory perspective[J]. Front. Environ. Sci. Eng., 2020, 14(2): 29-.
[2] Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG. Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell[J]. Front.Environ.Sci.Eng., 2014, 8(4): 624-630.
[3] Gefu ZHU, Chaoxiang LIU, Jianzheng LI, Nanqi REN, Lin LIU, Xu HUANG. Fermentative hydrogen production from beet sugar factory wastewater treatment in a continuous stirred tank reactor using anaerobic mixed consortia[J]. Front Envir Sci Eng, 2013, 7(1): 143-150.
[4] Sheng CHANG, Jianzheng LI, Feng LIU, Ze YU. Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures[J]. Front Envir Sci Eng, 2012, 6(6): 901-906.
[5] Guochen ZHENG, Jianzheng LI, Feng ZHAO, Liguo ZHANG, Li WEI, Qiaoying BAN, Yongsheng ZHAO. Effect of illumination on the hydrogen-production capability of anaerobic activated sludge[J]. Front Envir Sci Eng, 2012, 6(1): 125-130.
[6] Xiaoliang WANG, Curtis ROBBINS, S. Kent HOEKMAN, Judith C. CHOW, John G. WATSON, Dennis SCHUETZLE. Dilution sampling and analysis of particulate matter in biomass-derived syngas[J]. Front Envir Sci Eng Chin, 2011, 5(3): 320-330.
[7] Gang XIAO, Baosheng JIN, Mingjiang NI, Kefa CEN, Yong CHI, Zhongxin TAN. A steam dried municipal solid waste gasification and melting process[J]. Front Envir Sci Eng Chin, 2011, 5(2): 193-204.
[8] Sheng CHANG, Jianzheng LI, Feng LIU. Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor[J]. Front Envir Sci Eng Chin, 2011, 5(1): 140-148.
[9] Bo WANG, Wei WAN, Jianlong WANG, . Effects of nitrate concentration on biological hydrogen production by mixed cultures[J]. Front.Environ.Sci.Eng., 2009, 3(4): 380-386.
[10] Nanqi REN, Wanqian GUO, Bingfeng LIU, Guangli CAO, Jing TANG. Biological hydrogen production from organic wastewater by dark fermentation in China: Overview and prospects[J]. Front.Environ.Sci.Eng., 2009, 3(4): 375-379.
[11] XIAO Gang, NI Mingjiang, CHI Yong, JIN Yuqi, ZHANG Jiaquan, MIAO Qi, CEN Kefa. Research on low emission MSW gasification and melting system[J]. Front.Environ.Sci.Eng., 2007, 1(4): 498-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed