|
|
Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell |
Dawei LIANG1,2,*( ),Yanyan LIU1,Sikan PENG1,Fei LAN1,Shanfu LU1,2,Yan XIANG1,2 |
1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry & Environment, Beihang University, Beijing 100191, China 2. Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191, China |
|
|
Abstract A biocathode with microbial catalyst in place of a noble metal was successfully developed for hydrogen evolution in a microbial electrolysis cell (MEC). The strategy for fast biocathode cultivation was demonstrated. An exoelectrogenic reaction was initially extended with an H2-full atmosphere to enrich H2-utilizing bacteria in a MEC bioanode. This bioanode was then inversely polarized with an applied voltage in a half-cell to enrich the hydrogen-evolving biocathode. The electrocatalytic hydrogen evolution reaction (HER) kinetics of the biocathode MEC could be enhanced by increasing the bicarbonate buffer concentration from 0.05 mol·L-1 to 0.5 mol·L-1 and/or by decreasing the cathode potential from -0.9 V to -1.3 V vs. a saturated calomel electrode (SCE). Within the tested potential region in this study, the HER rate of the biocathode MEC was primarily influenced by the microbial catalytic capability. In addition, increasing bicarbonate concentration enhances the electric migration rate of proton carriers. As a consequence, more mass H+ can be released to accelerate the biocathode-catalyzed HER rate. A hydrogen production rate of 8.44 m3·m-3·d-1 with a current density of 951.6 A·m-3 was obtained using the biocathode MEC under a cathode potential of -1.3 V vs. SCE and 0.4 mol·L-1 bicarbonate. This study provided information on the optimization of hydrogen production in biocathode MEC and expanded the practical applications thereof.
|
Keywords
microbial electrolysis cell (MEC)
biocathode
hydrogen production
bicarbonate
cathode potential
|
Corresponding Author(s):
Dawei LIANG
|
Issue Date: 11 June 2014
|
|
1 |
LiuH, GrotS, LoganB E. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 2005, 39(11): 4317-4320 doi: 10.1021/es050244p pmid: 15984815
|
2 |
ChengS, LoganB E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18871-18873 doi: 10.1073/pnas.0706379104 pmid: 18000052
|
3 |
LoganB E, CallD, ChengS, HamelersH V M, SleutelsT H J A, JeremiasseA W, RozendalR A. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology, 2008, 42(23): 8630-8640 doi: 10.1021/es801553z pmid: 19192774
|
4 |
CallD, LoganB E. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology, 2008, 42(9): 3401-3406 doi: 10.1021/es8001822 pmid: 18522125
|
5 |
SleutelsT H J A, HamelersH V M, RozendalR A, BuismanC J N. Ion transport resistance in microbial electrolysis cells with anion and cation exchange membranes. International Journal of Hydrogen Energy, 2009, 34(9): 3612-3620 doi: 10.1016/j.ijhydene.2009.03.004
|
6 |
CallD F, MerrillM D, LoganB E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science & Technology, 2009, 43(6): 2179-2183 doi: 10.1021/es803074x pmid: 19368232
|
7 |
SelemboP A, MerrillM D, LoganB E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. International Journal of Hydrogen Energy, 2010, 35(2): 428-437 doi: 10.1016/j.ijhydene.2009.11.014
|
8 |
LeeH S, TorresC I, ParameswaranP, RittmannB E. Fate of H2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environmental Science & Technology, 2009, 43(20): 7971-7976 doi: 10.1021/es900204j pmid: 19921922
|
9 |
RozendalR A, JeremiasseA W, HamelersH V M, BuismanC J N. Hydrogen production with a microbial biocathode. Environmental Science & Technology, 2008, 42(2): 629-634 doi: 10.1021/es071720+ pmid: 18284174
|
10 |
JeremiasseA W, HamelersH V M, BuismanC J N. Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry (Amsterdam, Netherlands), 2010, 78(1): 39-43 doi: 10.1016/j.bioelechem.2009.05.005 pmid: 19523879
|
11 |
VirdisB, RabaeyK, YuanZ, KellerJ. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Research, 2008, 42(12): 3013-3024 doi: 10.1016/j.watres.2008.03.017 pmid: 18466949
|
12 |
WangA J, ChengH Y, RenN Q, CuiD, LinN, WuW M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering, 2012, 6(4): 569-574 doi: 10.1007/s11783-011-0335-1
|
13 |
BondD R, LovleyD R. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 2003, 69(3): 1548-1555 doi: 10.1128/AEM.69.3.1548-1555.2003 pmid: 12620842
|
14 |
CroeseE, PereiraM A, EuverinkG J W, StamsA J M, GeelhoedJ S. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Applied Microbiology and Biotechnology, 2011, 92(5): 1083-1093 doi: 10.1007/s00253-011-3583-x pmid: 21983651
|
15 |
AulentaF, CanosaA, MajoneM, PaneroS, RealeP, RossettiS. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environmental Science & Technology, 2008, 42(16): 6185-6190 doi: 10.1021/es800265b pmid: 18767685
|
16 |
JeremiasseA W, HamelersH V M, CroeseE, BuismanC J N. Acetate enhances startup of a H?-producing microbial biocathode. Biotechnology and Bioengineering, 2012, 109(3): 657-664 doi: 10.1002/bit.24338 pmid: 22012403
|
17 |
PisciottaJ M, ZaybakZ, CallD F, NamJ Y, LoganB E. Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Applied and Environmental Microbiology, 2012, 78(15): 5212-5219 doi: 10.1128/AEM.00480-12 pmid: 22610438
|
18 |
MerrillM D, LoganB E. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. Journal of Power Sources, 2009, 191(2): 203-208 doi: 10.1016/j.jpowsour.2009.02.077
|
19 |
LiangD W, PengS K, LuS F, LiuY Y, LanF, XiangY. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresource Technology, 2011, 102(23): 10881-10885 doi: 10.1016/j.biortech.2011.09.028 pmid: 21974881
|
20 |
GeelhoedJ S, StamsA J M. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environmental Science & Technology, 2011, 45(2): 815-820 doi: 10.1021/es102842p pmid: 21158443
|
21 |
MunozL D, ErableB, EtcheverryL, RiessJ, BasséguyR, BergelA. Combining phosphate species and stainless steel cathode to enhance hydrogen evolution in microbial electrolysis cell (MEC). Electrochemistry Communications, 2010, 12(2): 183-186 doi: 10.1016/j.elecom.2009.11.017
|
22 |
FanY, HuH, LiuH. Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environmental Science & Technology, 2007, 41(23): 8154-8158 doi: 10.1021/es071739c pmid: 18186352
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|