Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1084-1095    https://doi.org/10.1007/s11783-015-0805-y
RESEARCH ARTICLE
Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal
Jingya SHEN1,Yuliang SUN1,Liping HUANG1,*(),Jinhui YANG2
1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
2. Experiment Center of Chemistry, Dalian University of Technology, Dalian 116024, China
 Download: PDF(1611 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cobalt and copper recovery from aqueous Co(II) and Cu(II) is one critical step for cobalt and copper wastewaters treatment. Previous tests have primarily examined Cu(II) and Co(II) removal in microbial electrolysis cells (MECs) with abiotic cathodes and driven by microbial fuel cell (MFCs). However, Cu(II) and Co(II) removal rates were still slow. Here we report MECs with biocathodes and driven by MFCs where enhanced removal rates of 6.0±0.2 mg?L−1?h−1 for Cu(II) at an initial concentration of 50 mg?L−1 and 5.3±0.4 mg?L−1 h−1 for Co(II) at an initial 40 mg?L−1 were achieved, 1.7 times and 3.3 times as high as those in MECs with abiotic cathodes and driven by MFCs. Species of Cu(II) was reduced to pure copper on the cathodes of MFCs whereas Co(II) was removed associated with microorganisms on the cathodes of the connected MECs. Higher Cu(II) concentrations and smaller working volumes in the cathode chambers of MFCs further improved removal rates of Cu(II) (115.7 mg?L−1?h−1) and Co(II) (6.4 mg?L−1?h−1) with concomitantly achieving hydrogen generation (0.05±0.00 mol?mol−1 COD). Phylogenetic analysis on the biocathodes indicates Proteobacteria dominantly accounted for 67.9% of the total reads, followed by Firmicutes (14.0%), Bacteroidetes (6.1%), Tenericutes (2.5%), Lentisphaerae (1.4%), and Synergistetes (1.0%). This study provides a beneficial attempt to achieve simultaneous enhanced Cu(II) and Co(II) removal, and efficient Cu(II) and Co(II) wastewaters treatment without any external energy consumption.

Keywords biocathode      microbial electrolysis cell      microbial fuel cell      Cu(II) removal      Co(II) removal     
Corresponding Author(s): Liping HUANG   
Online First Date: 02 July 2015    Issue Date: 23 November 2015
 Cite this article:   
Jingya SHEN,Yuliang SUN,Liping HUANG, et al. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0805-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1084
Fig.1  Schematic diagram of MECs with biocathodes and driven by MFCs for simultaneous enhanced Cu(II) and Co(II) removal
Fig.2  (a) Cu(II) and Co(II) removal rates, (b) polarization curve of MFCs, (c) cyclic voltammetry tests on the biocathodes of MECs, and (d) peak current – scan rate on the biotic and abiotic cathodes of MECs (working volume in the cathode chambers of MFCs: 25 mL)
working volume/mL initial Cu(II) concentration/(mg?L−1) CE ηsys/% yield
CEMFC,an/% CEMEC,an/% YCu/(mol?mol−1 COD) YCo/(mol?mol−1 COD) YH2/(mol?mol−1 COD) Yorg/(mol?mol−1 COD) Ybio/(mol?mol−1 COD)
25 5 43.3±0.2 47.3±0.2 6.2±0.1 0.06±0.00 0.19±0.00 0.07±0.00 0.07±0.00
50 45.5±0.1 53.9±0.1 10.4±0.4 0.24±0.01 0.17±0.01 0.10±0.00 0.08±0.00
500 51.4±0.7 54.2±0.7 33.6±0.8 1.21±0.04 0.10±0.00 0.01±0.00 0.03±0.00 0.04±0.00
1000 55.1±0.2 54.7±0.2 42.0±0.2 1.61±0.00 0.08±0.00 0.02±0.00 0.02±0.00 0.01±0.00
13 1000 58.0±0.1 60.0±0.2 51.4±0.1 1.95±0.60 0.07±0.00 0.05±0.00 0.01±0.00 0.01±0.00
Tab.1  Yields of copper, cobalt, hydrogen, organics and biomass, and operational efficiencies in the MECs with biocathodes and driven by MFCs under various conditions
Fig.3  SEM observation on the cathodes of (a) MFCs and (b) MECs after around 10 fed-batch cycles operation (square indicates the location of EDS analysis). EDS results on products of (c) Cu(II) reduction and (d) Co(II) removal associated with bacteria
Fig.4  Theoretical cathode potentials for half-reactions of (a) Cu(II) to Cu(I), Cu(II) to Cu and Cu(I) to Cu, and (b) Co(III) to Co(II), Co(III) to Co3O4 and Co(II) to Co, at different pH values
Fig.5  (a) Cu(II) and (b) Co(II) removal rates, (c) polarization curve of MFCs, (d) applied voltage and cathode potential in the biocathode MECs, (e) cyclic voltammetry tests and (f) linear sweep voltammetry on the cathodes of MFCs under various initial Cu(II) concentration conditions (working volume in the cathode chambers of MFCs: 25 mL)
Fig.6  (a) Cu(II) and Co(II) removal rates, and internal resistances of MFCs, (b) polarization curves of MFCs, (c) applied voltage and cathode potential, and (d) circuit current in the biocathode MECs under a smaller working volume of 13 mL in the cathode chambers of MFCs (initial Cu(II) concentration: 1000 mg?L−1)
Fig.7  Relative abundance of bacterial reads retrieved from the biocathodes of MECs classified at the (a) phylum and (b) class level. Phyla and classes that represented less than 0.5% of the total bacterial community composition were classified as “others
1 Freitas  M B J G, Celante  V G, Pietre  M K. Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits. Journal of Power Sources, 2010, 195(10): 3309–3315
https://doi.org/10.1016/j.jpowsour.2009.11.131
2 Tao  H C, Liang  M, Li  W, Zhang  L J, Ni  J R, Wu  W M. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. Journal of Hazardous Materials, 2011, 189(1−2): 186–192
https://doi.org/10.1016/j.jhazmat.2011.02.018 pmid: 21377788
3 Jiang  L, Huang  L, Sun  Y. Recovery of flakey cobalt from aqueous Co(II) with simultaneous hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2014, 39(2): 654–663
https://doi.org/10.1016/j.ijhydene.2013.10.112
4 Li  W, Yu  H, He  Z. Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy & Environmental Science, 2014, 7(3): 911–924
https://doi.org/10.1039/C3EE43106A
5 Modin  O, Wang  X, Wu  X, Rauch  S, Fedje  K K. Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions. Journal of Hazardous Materials, 2012, 235−236: 291–297
https://doi.org/10.1016/j.jhazmat.2012.07.058 pmid: 22910451
6 Tao  H C, Lei  T, Shi  G, Sun  X N, Wei  X Y, Zhang  L J, Wu  W M. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Journal of Hazardous Materials, 2014, 264: 1–7
https://doi.org/10.1016/j.jhazmat.2013.10.057 pmid: 24269969
7 Luo  H, Liu  G, Zhang  R, Bai  Y, Fu  S, Hou  Y. Heavy metal recovery combined with H2 production from artificial acid mine drainage using the microbial electrolysis cell. Journal of Hazardous Materials, 2014, 270: 153–159
https://doi.org/10.1016/j.jhazmat.2014.01.050 pmid: 24576695
8 Luo  H, Qin  B, Liu  G, Zhang  R, Tang  Y, Hou  Y. Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system. Frontiers of Environmental Science & Engineering, 2015, 9(3): 522–527.
9 Wu  D, Pan  Y, Huang  L, Quan  X, Yang  J. Comparison of Co(II) reduction on three different cathodes of microbial electrolysis cells driven by Cu(II)-reduced microbial fuel cells under various cathode volume conditions. Chemical Engineering Journal, 2015, 266: 121–132
https://doi.org/10.1016/j.cej.2014.12.078
10 Wu  D, Pan  Y, Huang  L, Zhou  P, Quan  X, Chen  H. Complete separation of Cu(II), Co(II) and Li(I) using self-driven MFCs-MECs with stainless steel mesh cathodes under continuous flow conditions. Separation and Purification Technology, 2015, 147: 114–124
https://doi.org/10.1016/j.seppur.2015.04.016
11 Rosenbaum  M A, Franks  A E. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Applied Microbiology and Biotechnology, 2014, 98(2): 509–518
https://doi.org/10.1007/s00253-013-5396-6 pmid: 24270896
12 Wang  A, Cheng  H, Ren  N, Cui  D, Lin  N, Wu  W. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science & Engineering, 2012, 6(4): 569–574
https://doi.org/10.1007/s11783-011-0335-1
13 Xia  X, Sun  Y, Liang  P, Huang  X. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization. Bioresource Technology, 2012, 120: 26–33
https://doi.org/10.1016/j.biortech.2012.06.017 pmid: 22784950
14 Huang  L, Regan  J M, Quan  X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 2011, 102(1): 316–323
https://doi.org/10.1016/j.biortech.2010.06.096 pmid: 20634062
15 Wang  Y, Liu  X, Li  W, Li  F, Wang  Y, Sheng  G, Zeng  R, Yu  H. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy, 2012, 98: 230–235
https://doi.org/10.1016/j.apenergy.2012.03.029
16 Fradler  K R, Michie  I, Dinsdale  R M, Guwy  A J, Premier  G C. Augmenting microbial fuel cell power by coupling with supported liquid membrane permeation for zinc recovery. Water Research, 2014, 55: 115–125
https://doi.org/10.1016/j.watres.2014.02.026 pmid: 24602866
17 Huang  L, Yao  B, Wu  D, Quan  X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell-microbial electrolysis cell systems. Journal of Power Sources, 2014, 259: 54–64
https://doi.org/10.1016/j.jpowsour.2014.02.061
18 Huang  L, Chai  X, Chen  G, Logan  B E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environmental Science & Technology, 2011, 45(11): 5025–5031
https://doi.org/10.1021/es103875d pmid: 21528902
19 Wang  A J, Cheng  H Y, Liang  B, Ren  N Q, Cui  D, Lin  N, Kim  B H, Rabaey  K. Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environmental Science & Technology, 2011, 45(23): 10186–10193
https://doi.org/10.1021/es202356w pmid: 21985580
20 Zhang  G, Zhao  Q, Jiao  Y, Zhang  J, Jiang  J, Ren  N, Kim  B H. Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. Journal of Power Sources, 2011, 196(15): 6036–6041
https://doi.org/10.1016/j.jpowsour.2011.03.096
21 Huang  L, Chai  X, Quan  X, Logan  B E, Chen  G. Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresource Technology, 2012, 111: 167–174
https://doi.org/10.1016/j.biortech.2012.01.171 pmid: 22357291
22 Liang  P, Wei  J, Li  M, Huang  X. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science & Engineering, 2013, 7(6): 913–919
https://doi.org/10.1007/s11783-013-0583-3
23 Fan  Y, Hu  H, Liu  H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources, 2007, 171(2): 348–354
https://doi.org/10.1016/j.jpowsour.2007.06.220
24 Fan  Y, Han  S K, Liu  H. Improved performance of CEA microbial fuel cells with increased reactor size. Energy & Environmental Science, 2012, 5(8): 8273–8280
https://doi.org/10.1039/c2ee21964f
25 Logan  B E. Essential data and techniques for conducting microbial fuel cell and other types of bioelectrochemical system experiments. ChemSusChem, 2012, 5(6): 988–994
https://doi.org/10.1002/cssc.201100604 pmid: 22517564
26 Zhang  Y, Yu  L, Wu  D, Huang  L, Zhou  P, Quan  X, Chen  G. Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells. Journal of Power Sources, 2015, 273: 1103–1113
https://doi.org/10.1016/j.jpowsour.2014.09.126
27 Varia  J, Martínez  S S, Orta  S V, Bull  S, Roy  S. Bioelectrochemical metal remediation and recovery of Au3+, Co2+ and Fe3+ metal ions. Electrochimica Acta, 2013, 95: 125–131
https://doi.org/10.1016/j.electacta.2013.02.051
28 Batlle-Vilanova  P, Puig  S, Gonzalez-Olmos  R, Vilajeliu-Pons  A, Bañeras  L, Balaguer  M D, Colprim  J. Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 2014, 39(3): 1297–1305
https://doi.org/10.1016/j.ijhydene.2013.11.017
29 Sharma  M, Bajracharya  S, Gildemyn  S, Patil  S A, Alvarez-Gallego  Y, Pant  D, Rabaey  K, Dominguez-Benetton  X. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochimica Acta, 2014, 140: 191–208
https://doi.org/10.1016/j.electacta.2014.02.111
30 Harnisch  F, Freguia  S. A basic tutorial on cyclic voltammetry for the investigation of electroactive microbial biofilms. Chemistry, an Asian Journal, 2012, 7(3): 466–475
https://doi.org/10.1002/asia.201100740 pmid: 22279004
31 Huang  L, Liu  Y, Yu  L, Quan  X, Chen  G. A new clean approach for production of cobalt dihydroxide from aqueous Co(II) using oxygen-reducing biocathode microbial fuel cells. Journal of Cleaner Production, 2015, 86: 441–446
https://doi.org/10.1016/j.jclepro.2014.08.018
32 Huang  L, Shi  Y, Wang  N, Dong  Y. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation, 2014, 25(4): 615–632
https://doi.org/10.1007/s10532-014-9686-1 pmid: 24902896
33 Silva-Martínez  S, Roy  S. Copper recovery from tin stripping solution: Galvanostatic deposition in a batch-recycle system. Separation and Purification Technology, 2013, 118: 6–12
https://doi.org/10.1016/j.seppur.2013.06.030
34 Cheng  S A, Wang  B S, Wang  Y H. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresource Technology, 2013, 147: 332–337
https://doi.org/10.1016/j.biortech.2013.08.040 pmid: 23999262
35 Liao  L, Xu  X W, Jiang  X W, Wang  C S, Zhang  D S, Ni  J Y, Wu  M. Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiology Ecology, 2011, 78(3): 565–585
https://doi.org/10.1111/j.1574-6941.2011.01186.x pmid: 22067077
[1] Supplementary Material Download
[1] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[2] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[3] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[4] Xia Hou, Liping Huang, Peng Zhou, Hua Xue, Ning Li. Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes[J]. Front. Environ. Sci. Eng., 2018, 12(4): 7-.
[5] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[6] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[7] Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
[8] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[9] Dawei LIANG,Yanyan LIU,Sikan PENG,Fei LAN,Shanfu LU,Yan XIANG. Effects of bicarbonate and cathode potential on hydrogen production in a biocathode electrolysis cell[J]. Front.Environ.Sci.Eng., 2014, 8(4): 624-630.
[10] Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell[J]. Front Envir Sci Eng, 2014, 8(1): 137-143.
[11] Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode[J]. Front Envir Sci Eng, 2013, 7(6): 913-919.
[12] Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell[J]. Front Envir Sci Eng, 2013, 7(4): 526-530.
[13] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[14] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
[15] Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN , . A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria[J]. Front.Environ.Sci.Eng., 2009, 3(3): 307-312.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed