Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2011, Vol. 5 Issue (1) : 21-27    https://doi.org/10.1007/s11783-011-0303-9
REVIEW ARTICLE
Using pyrosequencing and quantitative PCR to analyze microbial communities
Husen ZHANG()
Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA
 Download: PDF(1615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

New high-throughput technologies continue to emerge for studying complex microbial communities. In particular, massively parallel pyrosequencing enables very high numbers of sequences, providing a more complete view of community structures and a more accurate inference of the functions than has been possible just a few years ago. In parallel, quantitative real-time polymerase chain reaction (QPCR) allows quantitative monitoring of specific community members over time, space, or different environmental conditions. In this review, the principles of these two methods and their complementary applications in studying microbial ecology in bioenvironmental systems are discussed. The parallel sequencing of amplicon libraries and using barcodes to differentiate multiple samples in a pyrosequencing run are explained. The best procedures and chemistries for QPCR amplifications are also described and advantages of applying automation to increase accuracy are addressed. Three examples in which pyrosequencing and QPCR were used together to define and quantify members of microbial communities are provided: in the human large intestine, in a methanogenic digester whose sludge was made more bioavailable by a high-voltage pretreatment, and on the biofilm anode of a microbial electrolytic cell. The key findings in these systems and how both methods were used in concert to achieve those findings are highlighted.

Keywords polymerase chain reaction (PCR)      microbial communities      pyrosequencing      gut      microbial fuel cell      sludge     
Corresponding Author(s): ZHANG Husen,Email:huzhang@mail.ucf.edu   
Issue Date: 05 March 2011
 Cite this article:   
Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-011-0303-9
https://academic.hep.com.cn/fese/EN/Y2011/V5/I1/21
Fig.1  Schematic drawing of the 454 pyrosequencing work flow, adapted from Gharizadeh et al. [] and Margulies et al. []
Fig.2  QPCR fluorescent dye chemistries. A, SYBR Green I. During amplification, SYBR Green I binds newly synthesized double-stranded DNA and yields an increase in fluorescence. Unbound dyes do not fluoresce. B, TaqMan? probe. An oligonucleotide probe labeled with a 5′ reporter fluorophore and 3′ quencher binds target DNA during primer annealing. During primer extension, polymerase partially displaces the probe and cleaves the reporter, and the unquenched reporter fluoresces
Fig.3  Using pyrosequencing (P) and QPCR (Q) in parallel to identify anode biofilm community members in an MEC. The black arrows indicate electron flow path when methanogenesis was allowed, and the green arrows indicate the flow when methanogenesis was inhibited. The cross sign (red) indicates the pathways that were not observed. The method used to identify key members mediating the observed electron flow is indicated as either P or Q. For example, ethanol fermenters were identified by using P (pyrosequencing), and hydrogenotrophic methanogens were identified with Q (QPCR)
1 Rittmann B E, Hausner M, Loffler F, Love N G, Muyzer G, Okabe S, Oerther D B, Peccia J, Raskin L, Wagner M. A vista for microbial ecology and environmental biotechnology. Environmental Science & Technology , 2006, 40(4): 1096–1103
doi: 10.1021/es062631k
2 Rittmann B E, Krajmalnik-Brown R, Halden R U. Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nature Reviews Microbiology , 2008, 6(8): 604–612
doi: 10.1038/nrmicro1939
3 Coates J D, Michaelidou U, Bruce R A, O'Connor S M, Crespi J N, Achenbach L A. Ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Applied and Environmental Microbiology , 1999, 65: 5234–5241
4 Wu J, Unz R F, Zhang H, Logan B E. Persistence of perchlorate and the relative numbers of perchlorate- and chlorate-respiring microorganisms in natural waters, soils, and wastewater. Bioremediation Journal , 2001, 5(2): 119–130
doi: 10.1080/20018891079230
5 Hugenholtz P, Goebel B M, Pace N R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology , 1998, 180: 4765–4774
6 Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiological Reviews , 1995, 59: 143–169
7 Zhang H, DiBaise J K, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell M D, Wing R, Rittmann B E, Krajmalnik-Brown R. Human gut microbiota in obesity and after gastric-bypass. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(7): 2365–2370
doi: 10.1073/pnas.0812600106
8 Eckburg P B, Bik E M, Bernstein C N, Purdom E, Dethlefsen L, Sargent M, Gill S R, Nelson K E, Relman D A. Diversity of the human intestinal microbial flora. Science , 2005, 308(5728): 1635–1638
doi: 10.1126/science.1110591
9 Hugenholtz P, Tyson G W. Microbiology- Metagenomics. Nature , 2008, 455(7212): 481–483
doi: 10.1038/455481a
10 Jones R T, Robeson M S, Lauber C L, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME Journal , 2009, 3(4): 442–453
doi: 10.1038/ismej.2008.127
11 Hamady M, Walker J J, Harris J K, Gold N J, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nature Methods , 2008, 5(3): 235–237
doi: 10.1038/nmeth.1184
12 Suzuki M T, Taylor L T, DeLong E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5 '-nuclease assays. Applied and Environmental Microbiology , 2000, 66(11): 4605–4614
doi: 10.1128/AEM.66.11.4605-4614.2000
13 Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering , 2005, 89(6): 670–679
doi: 10.1002/bit.20347
14 Ritalahti K M, Amos B K, Sung Y, Wu Q, Koenigsberg S S, Loffler F E. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Applied and Environmental Microbiology , 2006, 72(4): 2765–2774
doi: 10.1128/AEM.72.4.2765-2774.2006
15 Margulies M, Egholm M, Altman, W E, Attiya S, Bader J S, Bemben L A, Berka J, Braverman M S, Chen Y J, Chen Z T, Dewell S B, Du L, Fierro J M, Gomes X V, Godwin B C, He W, Helgesen S, Ho C H, Irzyk G P, Jando S C, Alenquer M L I, Jarvie T P, Jirage K B, Kim J B, Knight J R, Lanza J R, Leamon J H, Lefkowitz S M, Lei M, Li J, Lohman K L, Lu H, Makhijani V B, McDade K E, McKenna M P, Myers E W, Nickerson E, Nobile J R, Plant R, Puc B P, Ronan M T, Roth G T, Sarkis G J, Simons J F, Simpson J W, Srinivasan M, Tartaro K R, Tomasz A, Vogt K A, Volkmer G A, Wang S H, Wang Y, Weiner M P, Yu P G, Begley R F, Rothberg J M. Genome sequencing in microfabricated high-density picolitre reactors. Nature , 2005, 437: 376–380
16 Gharizadeh B, Kalantari M, Garcia C A, Johansson B, Nyren P. Typing of human papillomavirus by pyrosequencing. Laboratory Investigation , 2001, 81(5): 673–679
doi: 10.1038/labinvest.3780276
17 Zhang T, Fang H H. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology , 2006, 70(3): 281–289
doi: 10.1007/s00253-006-0333-6
18 Talbot G, Topp E, Palin M F, Masse D I. Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Research , 2008, 42(3): 513–537
doi: 10.1016/j.watres.2007.08.003
19 Sogin M L, Morrison H G, Huber J A, Mark Welch D, Huse S M, Neal P R, Arrieta J M, Herndl G J. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(32): 12115–12120
doi: 10.1073/pnas.0605127103
20 Rittmann B E, Lee H, Zhang H, Alder J, Banazak J E, Lopez R. Full-scale application of Focused-Pulsed pre-treatment for improving biosolids digestion and conversion to methane. Water Science and Technology , 2008, 58(10): 1895–1901
doi: 10.2166/wst.2008.547
21 Zhang H, Banaszak J E, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann B E. Focused-Pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Research , 2009, 43(18): 4517–4526
doi: 10.1016/j.watres.2009.07.034
22 Parameswaran P, Zhang H, Torres C I, Rittmann B E, Krajmalnik-Brown R. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers. Biotechnology and Bioengineering , 20 10, 105(1): 69–78
23 Parameswaran P, Torres C I, Lee H S, Krajmalnik-Brown R, Rittmann B E. Syntrophic interactions among anode respiring bacteria (ARB) and non-ARB in a biofilm anode: electron balances. Biotechnology and Bioengineering , 2009, 103(3): 513–523
doi: 10.1002/bit.22267
24 Liu H, Cheng S, Logan B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology , 2005, 39(2): 658–662
doi: 10.1021/es048927c
25 Jung S, Regan J M. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Applied Microbiology and Biotechnology , 2007, 77(2): 393–402
doi: 10.1007/s00253-007-1162-y
26 Torres C I, Marcus A K, Parameswaran P, Rittmann B E. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode. Environmental Science & Technology , 2008, 42(17): 6593–6597
doi: 10.1021/es800970w
27 Lee H S, Parameswaran P, Kato-Marcus A, Torres C I, Rittmann B E. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Research , 2008, 42(6-7): 1501–1510
doi: 10.1016/j.watres.2007.10.036
28 Logan B E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology , 2009, 7(5): 375–381
doi: 10.1038/nrmicro2113
29 Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology , 2010, 12(1): 118–123
doi: 10.1111/j.1462-2920.2009.02051.x
30 Quince C, Lanzen A, Curtis T P, Davenport R J, Hall N, Head I M, Read L F, Sloan W T. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods , 2009, 6(9): 639–641
doi: 10.1038/nmeth.1361
31 Engelbrektson A, Kunin V, Wrighton K C, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME Journal , 2010, 4(5): 642–647
doi: 10.1038/ismej.2009.153
32 Zhou J, Kang S, Schadt C W, Garten C T. Spatial scaling of functional gene diversity across various microbial taxa. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(22): 7768–7773
doi: 10.1073/pnas.0709016105
[1] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[2] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[3] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[4] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[5] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[6] Guoliang Zhang, Liang Zhang, Xiaoyu Han, Shujun Zhang, Yongzhen Peng. Start-up of PN-anammox system under low inoculation quantity and its restoration after low-loading rate shock[J]. Front. Environ. Sci. Eng., 2021, 15(2): 32-.
[7] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[8] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[9] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[10] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[11] An Ding, Yingxue Zhao, Huu Hao Ngo, Langming Bai, Guibai Li, Heng Liang, Nanqi Ren, Jun Nan. Metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide addition for sludge reduction and fouling control in a gravity-driven membrane bioreactor[J]. Front. Environ. Sci. Eng., 2020, 14(6): 96-.
[12] An Ding, Yingxue Zhao, Zhongsen Yan, Langming Bai, Haiyang Yang, Heng Liang, Guibai Li, Nanqi Ren. Co-application of energy uncoupling and ultrafiltration in sludge treatment: Evaluations of sludge reduction, supernatant recovery and membrane fouling control[J]. Front. Environ. Sci. Eng., 2020, 14(4): 59-.
[13] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[14] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[15] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed