Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    2009, Vol. 3 Issue (3) : 307-312    https://doi.org/10.1007/s11783-009-0028-1
Research articles
A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria
Xiaoxin CAO , Xia HUANG , Xiaoyuan ZHANG , Peng LIANG , Mingzhi FAN ,
State Key Joint Laboratory of Environment Simulation and Pollution Control, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084, China;
 Download: PDF(180 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Abstract Current methods for testing the electricity generation capacity of isolates are time- and labor-consuming. This paper presents a rapid voltage testing system of exoelectrogenic bacteria called Quickscreen, which is based on a microliter microbial fuel cell (MFC). Geobacter sulfurreducens and Shewanella baltica were used as the model exoelectrogenic bacteria; Escherichia coli that cannot generate electricity was used as a negative control. It was found that the electricity generation capacity of the isolates could be determined within about five hours by using Quickscreen, and that its time was relatively rapid compared with the time needed by using larger MFCs. A parallel, stable, and low background voltage was achieved using titanium as a current collector in the blank run. The external resistance had little impact on the blank run during the initial period. The cathode with a five-hole configuration, used to hydrate the carbon cathode, gave higher cathode potentials than did that with a one-hole configuration. Steady discharge and current interrupt methods showed that the anode mostly contributed to the large internal resistance of the Quickscreen system. However, the addition of graphite felt decreased the resistance from 18kΩ to 5kΩ. This device was proved to be useful to rapidly evaluate the electricity generation capacity of different bacteria.
Keywords microbial fuel cell      exoelectrogenic bacteria      rapid screening      
Issue Date: 05 September 2009
 Cite this article:   
Xiaoxin CAO,Xiaoyuan ZHANG,Xia HUANG, et al. A mini-microbial fuel cell for voltage testing of exoelectrogenic bacteria[J]. Front.Environ.Sci.Eng., 2009, 3(3): 307-312.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0028-1
https://academic.hep.com.cn/fese/EN/Y2009/V3/I3/307
Lovley D R. Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol, 2006, 4(7): 497―508

doi: 10.1038/nrmicro1442
Bond D R, Holmes D E, Tender L M, Lovley D R. Electrode-reducing microorganisms that harvest energy from marinesediments. Science, 2002, 295(5554): 483―485

doi: 10.1126/science.1066771
Logan B E, Regan J M. Microbial fuel cell—challengesand applications. Environ Sci Technol, 2006, 40(17): 5172―5180

doi: 10.1021/es0627592
Kim B H, Ikeda T, Park H S, Kim H J, Hyun M S, Kano K, Takagi K, Tatsumi H. Electrochemical activity of an Fe(III)-reducing bacterium,Shewanella putrefaciens IR-1, in the presence of alternative electronacceptors. Biotechnol Tech, 1999, 13(7): 475―478

doi: 10.1023/A:1008993029309
Kim H J, Park H S, Hyun M S, Chang I S, Kim M, Kim B H. A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella putrefaciense. Enzyme MicrobTechnol, 2002, 30(2): 145―152

doi: 10.1016/S0141-0229(01)00478-1
Bond D R, Lovley D R. Electricity production byGeobacter sulfurreducens attached to electrodes. Appl Environ Microbiol, 2003, 69(3): 1548―1555

doi: 10.1128/AEM.69.3.1548-1555.2003
Childers S E, Ciufo S, Lovley D R. Geobacter metallireducens accesses insoluble Fe(III)oxide by chemotaxis. Nature, 2002, 416(6882): 767―769

doi: 10.1038/416767a
Holmes D E, Nicoll J S, Bond D R, Lovley D R. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacterelectrodiphilus gen. nov., sp nov., in electricity productionby a marine sediment fuel cell. Appl EnvironMicrobiol, 2004, 70(10): 6023―6030

doi: 10.1128/AEM.70.10.6023-6030.2004
Chaudhuri S K, Lovley D R. Electricity generation bydirect oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol, 2003, 21(10): 1229―1232

doi: 10.1038/nbt867
Bond D R, Lovley D R. Evidence for involvementof an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol, 2005, 71(4): 2186―2189

doi: 10.1128/AEM.71.4.2186-2189.2005
Holmes D E, Bond D R, Lovley D R. Electron transfer by Desulfobulbuspropionicus to Fe(III) and graphite electrodes. Appl Environ Microbiol, 2004, 70(2): 1234―1237

doi: 10.1128/AEM.70.2.1234-1237.2004
Pham C A, Jung S J, Phung N T, Lee J, Chang I S, Kim B H, Yi H, Chun J. A novel electrochemically active and Fe(III)-reducingbacterium phylogenetically related to Aeromonashydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett, 2003, 223(1): 129―134

doi: 10.1016/S0378-1097(03)00354-9
Park H S, Kim B H, Kim H S, Kim H J, Kim G T, Kim M, Chang I S, Park Y K, Chang H I. A novel electrochemicallyactive and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbialfuel cell. Anaerobe, 2001, 7(6): 297―306

doi: 10.1006/anae.2001.0399
Rabaey K, Boon N, Hofte M, Verstraete W. Microbialphenazine production enhances electron transfer in biofuel cells. Environ Sci Technol, 2005, 39(9): 3401―3408

doi: 10.1021/es048563o
Milliken C E, May H D. Sustained generation of electricityby the spore-forming, Gram-positive, Desulfitobacterium hafniensestrain DCB2. Appl Microbiol Biotechnol, 2007, 73(5): 1180―1189

doi: 10.1007/s00253-006-0564-6
Logan B, Cheng S, Watson V, Estadt G. Graphitefiber brush anodes for increased power production in air-cathode microbialfuel cells. Environ Sci Technol, 2007, 41(9): 3341―3346

doi: 10.1021/es062644y
Rabaey K, Boon N, Siciliano S D, Verhaege M, Verstraete W. Biofuel cells select formicrobial consortia that self-mediate electron transfer. Appl Environ Microbiol, 2004, 70(9): 5373―5382

doi: 10.1128/AEM.70.9.5373-5382.2004
Cao X X, Liang P, Huang X. A membrane electrode assembly typed microbial fuel cellfor electricity generation. Acta ScientiaeCircumstantiae, 2006, 26(8): 1252―1257 (in Chinese)
Ringeisen B R, Henderson E, Wu P K, Pietron J, Ray R, Little B, Biffinger J C, Jones-Meehan J M. High power density from aminiature microbial fuel cell using Shewanellaoneidensis DSP10. Environ SciTechnol, 2006, 40(8): 2629―2634

doi: 10.1021/es052254w
Liang P, Huang X, Fan M Z, Cao X X, Wang C. Composition and distribution of internalresistance in three types of microbial fuel cells. Appl Microbiol Biotechnol, 2007, 77(3): 551―558

doi: 10.1007/s00253-007-1193-4
[1] Xingguo Guo, Qiuying Wang, Ting Xu, Kajia Wei, Mengxi Yin, Peng Liang, Xia Huang, Xiaoyuan Zhang. One-step ball milling-prepared nano Fe2O3 and nitrogen-doped graphene with high oxygen reduction activity and its application in microbial fuel cells[J]. Front. Environ. Sci. Eng., 2020, 14(2): 30-.
[2] Xiaoxue Mei, Heming Wang, Dianxun Hou, Fernanda Leite Lobo, Defeng Xing, Zhiyong Jason Ren. Shipboard bilge water treatment by electrocoagulation powered by microbial fuel cells[J]. Front. Environ. Sci. Eng., 2019, 13(4): 53-.
[3] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[4] Qingliang Zhao, Hang Yu, Weixian Zhang, Felix Tetteh Kabutey, Junqiu Jiang, Yunshu Zhang, Kun Wang, Jing Ding. Microbial fuel cell with high content solid wastes as substrates: a review[J]. Front. Environ. Sci. Eng., 2017, 11(2): 13-.
[5] Yong XIAO,Yue ZHENG,Song WU,Zhao-Hui YANG,Feng ZHAO. Nitrogen recovery from wastewater using microbial fuel cells[J]. Front. Environ. Sci. Eng., 2016, 10(1): 185-191.
[6] Jingya SHEN,Yuliang SUN,Liping HUANG,Jinhui YANG. Microbial electrolysis cells with biocathodes and driven by microbial fuel cells for simultaneous enhanced Co(II) and Cu(II) removal[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1084-1095.
[7] Sanath KONDAVEETI,Kwang Soon CHOI,Ramesh KAKARLA,Booki MIN. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs)[J]. Front.Environ.Sci.Eng., 2014, 8(5): 784-791.
[8] Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN. Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell[J]. Front Envir Sci Eng, 2014, 8(1): 137-143.
[9] Peng LIANG, Jincheng WEI, Ming LI, Xia HUANG. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode[J]. Front Envir Sci Eng, 2013, 7(6): 913-919.
[10] Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell[J]. Front Envir Sci Eng, 2013, 7(4): 526-530.
[11] Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery[J]. Front Envir Sci Eng, 2012, 6(4): 569-574.
[12] Husen ZHANG. Using pyrosequencing and quantitative PCR to analyze microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 21-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed