|
|
Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell |
Yanping HOU1, Kaiming LI2, Haiping LUO1, Guangli LIU1( ), Renduo ZHANG1, Bangyu QIN1, Shanshan CHEN1 |
1. The Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China; 2. South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China |
|
|
Abstract Separator between anode and cathode is an essential part of the microbial fuel cell (MFC) and its property could significantly influence the system performance. In this study we used polyvinyl alcohol (PVA) polymer membrane crosslinked with sulfosuccinic acid (SSA) as a new separator for the MFC. The highest power density of 759±4 mW·m-2 was obtained when MFC using the PVA membrane crosslinked with 15% of SSA due to its desirable proton conductivity (5.16 × 10-2 S·cm-1). The power density significantly increased to 1106±30?mW·m-2 with a separator-electrode-assembly configuration, which was comparable with glass fiber (1170±46?mW·m-2). The coulombic efficiencies of the MFCs with crosslinked PVA membranes ranged from 36.3% to 45.7% at a fix external resistance of 1000 ?. The crosslinked PVA membrane could be a promising alternative to separator materials for constructing practical MFC system.
|
Keywords
microbial fuel cell
crosslinked polyvinyl alcohol (PVA) membrane
separator material
power generation
coulombic efficiency
|
Corresponding Author(s):
LIU Guangli,Email:liugl@mail.sysu.edu.cn
|
Issue Date: 01 February 2014
|
|
1 |
Logan B E. Microbial Fuel Cells. New York: Wiley, 2007
|
2 |
Lovley D R. The microbe electric: conversion of organic matter to electricity. Current Opinion in Biotechnology , 2008, 19(6): 564–571 doi: 10.1016/j.copbio.2008.10.005 pmid:19000760
|
3 |
Mohan Y, Manojmuthukumar S, Das D. Electricity generation using microbial fuel cells. Inernational Journal of Hydrogen Energy , 2008, 33(1): 423–426 doi: 10.1016/j.ijhydene.2007.07.027
|
4 |
Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology , 2005, 23(6): 291–298 doi: 10.1016/j.tibtech.2005.04.008 pmid:15922081
|
5 |
Liu H, Cheng S A, Logan B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology , 2005, 39(14): 5488–5493 doi: 10.1021/es050316c pmid:16082985
|
6 |
Cheng S A, Liu H, Logan B E. Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology , 2006, 40(7): 2426–2432 doi: 10.1021/es051652w pmid:16646485
|
7 |
Du Z, Li H, Gu T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnology Advances , 2007, 25(5): 464–482 doi: 10.1016/j.biotechadv.2007.05.004 pmid:17582720
|
8 |
Liu H, Logan B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology , 2004, 38(14): 4040–4046 doi: 10.1021/es0499344 pmid:15298217
|
9 |
Kim J R, Premier G C, Hawkes F R, Dinsdale R M, Guwy A J. Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. Journal of Power Sources , 2009, 187(2): 393–399 doi: 10.1016/j.jpowsour.2008.11.020
|
10 |
Zhang X Y, Cheng S A, Huang X, Logan B E. Improved performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors & Bioelectronics , 2010, 25(7): 1825–1828 doi: 10.1016/j.bios.2009.11.018 pmid:20022480
|
11 |
Rozendal R A, Hamelers H V M, Molenkamp R J, Buisman C J N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research , 2007, 41(9): 1984–1994 doi: 10.1016/j.watres.2007.01.019 pmid:17343894
|
12 |
Kim J R, Cheng S A, Oh S E, Logan B E. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology , 2007, 41(3): 1004–1009 doi: 10.1021/es062202m pmid:17328216
|
13 |
Biffinger J C, Ray R, Little B, Ringeisen B R. Diversifying biological fuel cell designs by use of nanoporous filters. Environmental Science & Technology , 2007, 41(4): 1444–1449 doi: 10.1021/es061634u pmid:17593755
|
14 |
Fan Y Z, Hu H Q, Liu H. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. Journal of Power Sources , 2007, 171(2): 348–354 doi: 10.1016/j.jpowsour.2007.06.220
|
15 |
Zhang X Y, Cheng S A, Wang X, Huang X, Logan B E. Separator characteristics for increasing performance of microbial fuel cells. Environmental Science & Technology , 2009, 43(21): 8456–8461 doi: 10.1021/es901631p pmid:19924984
|
16 |
Finch C A. Poly(vinyl alcohol). New York: Wiley , 1992
|
17 |
Chuang W Y, Young T H, Chiu W Y, Lin C Y. The effect of polymeric additives on the structure and permeability of poly (vinyl alcohol) asymmetric membranes. Polymer , 2000, 41(15): 5633–5641 doi: 10.1016/S0032-3861(99)00818-6
|
18 |
Bolto B, Tran T, Hoang M, Xie Z, Xie J L. Crosslinked poly(vinyl alcohol) membranes. Progress in Polymer Science , 2009, 34(9): 969–981 doi: 10.1016/j.progpolymsci.2009.05.003
|
19 |
Rhim J W, Park H B, Lee C S, Jun J H, Kim D S, Lee Y M. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science , 2004, 238(1–2): 143–151 doi: 10.1016/j.memsci.2004.03.030
|
20 |
Yang C C, Chiu S J, Chien W C. Development of alkaline direct methanol fuel cells based on crosslinked PVA polymer membranes. Journal of Power Sources , 2006, 162(1): 21–29 doi: 10.1016/j.jpowsour.2006.06.065
|
21 |
Yang C C. Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC. Journal of Membrane Science , 2007, 288(1–2): 51–60 doi: 10.1016/j.memsci.2006.10.048
|
22 |
Yang C C, Lin C T, Chiu S J. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination , 2008, 233(1–3): 137–146 doi: 10.1016/j.desal.2007.09.036
|
23 |
Logan B E, Hamelers B, Rozendal R, Schr?der U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Microbial fuel cells: methodology and technology. Environmental Science & Technology , 2006, 40(17): 5181–5192 doi: 10.1021/es0605016 pmid:16999087
|
24 |
Picioreanu C, Head I M, Katuri K P, van Loosdrecht M C, Scott K. A computational model for biofilm-based microbial fuel cells. Water Research , 2007, 41(13): 2921–2940 doi: 10.1016/j.watres.2007.04.009 pmid:17537478
|
25 |
Zuo Y, Cheng S A, Logan B E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science & Technology , 2008, 42(18): 6967–6972 doi: 10.1021/es801055r pmid:18853817
|
26 |
Watson V J, Saito T, Hickner M A, Logan B E. Polymer coatings as separator layers for microbial fuel cell cathodes. Journal of Power Sources , 2011, 196(6): 3009–3014 doi: 10.1016/j.jpowsour.2010.11.105
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|