Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (5) : 68    https://doi.org/10.1007/s11783-019-1154-z
RESEARCH ARTICLE
Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions
Yuanyuan Zhang1, Masashi Kuroda1, Shunsuke Arai2, Fumitaka Kato2, Daisuke Inoue1, Michihiko Ike1()
1. Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
2. Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan
 Download: PDF(861 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Removal of selenate in saline wastewater by activated sludge was examined.

Sequencing batch reactor was operated under alternating anoxic/oxic conditions.

Above 97% removal of soluble selenium (Se) was achieved continuously.

Major Se removal mechanism varied depending on the length of aeration period.

Various Se-reducing bacteria likely contributed to coordinately to Se removal.

Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.

Keywords Activated sludge      Selenate reduction      Saline wastewater      Sequencing batch reactor      Alternating anoxic/oxic conditions      Selenium biovolatilization     
Corresponding Author(s): Michihiko Ike   
Issue Date: 05 August 2019
 Cite this article:   
Yuanyuan Zhang,Masashi Kuroda,Shunsuke Arai, et al. Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(5): 68.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1154-z
https://academic.hep.com.cn/fese/EN/Y2019/V13/I5/68
Phase (batch) Cycle duration (d) Oxygen condition Inf. Selenate (mM)
Start-up
I (1–3) 7 Oxygen-limiting 5
II (4–6) 7 Oxygen-limiting 1
III (7–9) 3 Oxygen-limiting 1
Se treatment
IV (10–15) 3 Alternating anoxic/oxic
(67.5 h/3 h)
1
V (16–21) 3 Alternating anoxic/oxic
(65.5 h/5 h)
1
VI (22–27) 3 Alternating anoxic/oxic
(63.5 h/7 h)
1
Tab.1  Operational phases of SBR
Fig.1  Se removal efficiencies (a), Se concentrations (b), dissolved organic carbon (DOC) removal efficiencies (c), DOC concentrations (d), solid Se (e) and aeration duration (f) during start-up phase (left) and Se treatment phase (right).
Fig.2  Sludge color change during the start-up period.
Se mass Phase IV Phase V Phase VI
Accumulation/Loss in SBR [mg-Se, (soluble, %)] Initial 96.10 (0%) 127.03 (0%) 131.94 (0%)
End 127.03 (0%) 131.94 (0%) 78.60 (0%)
Loss in SBR -30.93 -4.91 53.34
Input to/Output from SBR [mg-Se, (soluble, %)] Input as Inf. 74.08 (100%) 68.90 (100%) 66.05 (100%)
Output as Eff. 24.38 (5%) 19.56 (6%) 22.57 (5%)
Output as ES 3.49 (0%) 25.05 (0%) 16.41 (0%)
Loss 46.21 24.29 27.07
Total loss during in each phase [mg-Se, (total loss Se to input, %)] 15.28 (21%) 19.38 (28%) 80.41 (122%)
Tab.2  Cumulative Se mass balance in phases IV, V and VI
Sample (phase) Qualified sequence reads OTUs Shannon diversity Chao1 richness
Seed 41,449 1,456 4.52 3,794
Batch 2 (I) 37,184 1,044 3.85 2,690
Batch 6 (II) 37,445 832 3.36 1,938
Batch 8 (III) 25,936 646 3.50 1,620
Batch 21 (V) 47,648 601 3.22 1,392
Batch 27 (VI) 34,221 347 2.67 850
Tab.3  Summary of 16S rRNA gene amplicon sequencing of sludge samples
Fig.3  Bacterial community structure at phylum level. Rare phyla (relative abundance<1.0%) were classified as “unassigned; Other.”
Fig.4  Scatter plots (a) and dendrogram (b), respectively, of PCA and cluster analysis of bacterial community structures in different batches. The number near the plot is the sampling batch.
OTU ID Relative abundance Closest relative (Accession No.) Identity (%) Report on
Se reduction
Other features Reference
Seed Batch
2
Batch
6
Batch
8
Batch
21
Batch
27
Denovo1084 0% 0% 0% 0% 0% 15% Alcaligenes aquatilis (AJ937889) 100 + Denitrification Van Trappen et al. (2005)
Denovo2062 0% 1% 0% 0% 0% 10% Peptoclostridium acidaminophilum
(NR121725)
94 Strict anaerobe; Selenocysteine-containing proteins Poehlein et al. (2014)
Denovo7179 0% 0% 0% 2% 12% 2% Arcobacter bivalviorum
(FJ573217)
100 Facultative anaerobe Levican et al. (2012)
Denovo7350 1% 2% 16% 17% 13% 8% Soehngenia saccharolytica
(GQ461828)
94 + Denitrification Subedi et al. (2017)
Denovo7920 0% 16% 0% 1% 0% 0% Anaerotignum aminivorans (AB298756) 94 Strict anaerobe Ueki et al. (2017)
Denovo8018 0% 0% 0% 0% 11% 18% Marinobacterium stanieri (AB021367) 98 Marine aerobe Baumann et al. (1983);
Satomi et al. (2002)
Denovo8224 16% 10% 2% 4% 1% 0% Kineosphaera limosa (NR113146) 98 Strict aerobe; Growth under up to 3% NaCl Liu et al. (2002)
Denovo8432 0% 10% 4% 8% 7% 6% Shewanella algae (AB681980) 100 + Iron reduction; halotolerant facultative anaerobe Caccavo et al. (1996)
Denovo9521 1% 10% 5% 7% 3% 2% Petrimonas mucosa (KP233808) 98 Thermophilic facultative anaerobe Hahnke et al. (2016)
Denovo13093 0% 3% 19% 14% 8% 13% Marinobacterium halophilum (AY563030) 100 + Sulfate reduction; marine bacterium García-Solares et al. (2014); García-Depraect et al. (2017)
Tab.4  Predominant OTUs with relative abundance of >10% in at least one sample
1 P Baumann, R D Bowditch, L Baumann, B Beaman (1983). Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica: and P. doudoroffii. International Journal of Systematic Bacteriology, 33(4): 857–865
2 F Caccavo, B Frolund, K F Van Ommen, P H Nielsen (1996). Deflocculation of activated sludge by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Applied and Environmental Microbiology, 62(4): 1487–1490
pmid: 16535299
3 J G Caporaso, J Kuczynski, J Stombaugh, K Bittinger, F D Bushman, E K Costello, N Fierer, A G Peña, J K Goodrich, J I Gordon, G A Huttley, S T Kelley, D Knights, J E Koenig, R E Ley, C A Lozupone, D McDonald, B D Muegge, M Pirrung, J Reeder, J R Sevinsky, P J Turnbaugh, W A Walters, J Widmann, T Yatsunenko, J Zaneveld, R Knight (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336
https://doi.org/10.1038/nmeth.f.303 pmid: 20383131
4 H W Chang, Y D Nam, H Y Kwon, J R Park, J S Lee, J H Yoon, K G An, J W Bae (2007). Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. International Journal of Systematic and Evolutionary Microbiology, 57(1): 77–80
https://doi.org/10.1099/ijs.0.64505-0 pmid: 17220446
5 K A Cupp-Sutton, M T Ashby (2016). Biological chemistry of hydrogen selenide. Antioxidants (Basel), 5(4): 42
https://doi.org/10.3390/antiox5040042 pmid: 27879667
6 J W Doran, M Alexander (1977). Microbial transformations of selenium. Applied and Environmental Microbiology, 33(1): 31–37
pmid: 16345188
7 M Fujita, M Ike, S Nishimoto, K Takahashi, M Kashiwa (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83(6): 517–522
https://doi.org/10.1016/S0922-338X(97)81130-0
8 O García-Depraect, C Guerrero-Barajas, J Jan-Roblero, A Ordaz (2017). Characterization of a marine microbial community used for enhanced sulfate reduction and copper precipitation in a two-step process. Applied Biochemistry and Biotechnology, 182(2): 452–467
https://doi.org/10.1007/s12010-016-2337-8 pmid: 27878745
9 S M García-Solares, A Ordaz, O Monroy-Hermosillo, J Jan-Roblero, C Guerrero-Barajas (2014). High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments. Applied Biochemistry and Biotechnology, 174(8): 2919–2940
https://doi.org/10.1007/s12010-014-1237-z pmid: 25234397
10 S Hahnke, T Langer, D E Koeck, M Klocke (2016). Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. International Journal of Systematic and Evolutionary Microbiology, 66(3): 1466–1475
https://doi.org/10.1099/ijsem.0.000902 pmid: 26782749
11 R Jain, M Seder-Colomina, N Jordan, P Dessi, J Cosmidis, E D van Hullebusch, S Weiss, F Farges, P N L Lens (2015). Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. Journal of Hazardous Materials, 295: 193–200
https://doi.org/10.1016/j.jhazmat.2015.03.043 pmid: 25919502
12 T Kagami, T Narita, M Kuroda, E Notaguchi, M Yamashita, K Sei, S Soda, M Ike (2013). Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Research, 47(3): 1361–1368
https://doi.org/10.1016/j.watres.2012.12.001 pmid: 23270669
13 Y K Kharaka, G Ambats, T S Presser, R A Davis (1996). Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. Applied Geochemistry, 11(6): 797–802
https://doi.org/10.1016/S0883-2927(96)00044-3
14 D F Kincannon, Jr A F Gaudy (1966). Some effects of high salt concentrations on activated sludge. Journal- Water Pollution Control Federation, 38(7): 1148–1159
pmid: 5946663
15 M Kuroda, E Notaguchi, A Sato, M Yoshioka, A Hasegawa, T Kagami, T Narita, M Yamashita, K Sei, S Soda, M Ike (2011). Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. Journal of Bioscience and Bioengineering, 112(3): 259–264
https://doi.org/10.1016/j.jbiosc.2011.05.012 pmid: 21676651
16 M Lenz, P N L Lens (2009). The essential toxin: the changing perception of selenium in environmental sciences. Science of the Total Environment, 407(12): 3620–3633
https://doi.org/10.1016/j.scitotenv.2008.07.056 pmid: 18817944
17 A Levican, L Collado, C Aguilar, C Yustes, A L Diéguez, J L Romalde, M J Figueras (2012). Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Systematic and Applied Microbiology, 35(3): 133–138
https://doi.org/10.1016/j.syapm.2012.01.002 pmid: 22401779
18 J Li, L Yu, D Yu, D Wang, P Zhang, Z Ji (2014). Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater. Biodegradation, 25(1): 127–136
https://doi.org/10.1007/s10532-013-9645-2 pmid: 23624725
19 W T Liu, S Hanada, T L Marsh, Y Kamagata, K Nakamura (2002). Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 5): 1845–1849
pmid: 12361296
20 J M Macy, S Lawson (1993). Cell yield (YM) of Thauera selenatis grown anaerobically with acetate plus selenate or nitrate. Archives of Microbiology, 160(4): 295–298
https://doi.org/10.1007/BF00292080
21 J Mal, Y V Nancharaiah, E D van Hullebusch, P N L Lens (2017). Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresource Technology, 229: 11–19
https://doi.org/10.1016/j.biortech.2016.12.112 pmid: 28092731
22 J R Muscatello, D M Janz (2009). Selenium accumulation in aquatic biota downstream of a uranium mining and milling operation. Science of the Total Environment, 407(4): 1318–1325
https://doi.org/10.1016/j.scitotenv.2008.10.046 pmid: 19036410
23 Y V Nancharaiah, H M Joshi, M Hausner, V P Venugopalan (2008). Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere, 71(1): 30–35
https://doi.org/10.1016/j.chemosphere.2007.10.062 pmid: 18076969
24 Y V Nancharaiah, P N L Lens (2015). Selenium biomineralization for biotechnological applications. Trends in Biotechnology, 33(6): 323–330
https://doi.org/10.1016/j.tibtech.2015.03.004 pmid: 25908504
25 P Narasingarao, M M Häggblom (2007). Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Applied and Environmental Microbiology, 73(11): 3519–3527
https://doi.org/10.1128/AEM.02737-06 pmid: 17435005
26 R S Oremland, J S Blum, C W Culbertson, P T Visscher, L G Miller, P Dowdle, F E Strohmaier (1994). Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Applied and Environmental Microbiology, 60(8): 3011–3019
pmid: 16349362
27 R S Oremland, J T Hollibaugh, A S Maest, T S Presser, L G Miller, C W Culbertson (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Applied and Environmental Microbiology, 55(9): 2333–2343
pmid: 16348014
28 J A Peiffer, A Spor, O Koren, Z Jin, S G Tringe, J L Dangl, E S Buckler, R E Ley (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6548–6553
https://doi.org/10.1073/pnas.1302837110 pmid: 23576752
29 A Poehlein, J R Andreesen, R Daniel (2014). Complete genome sequence of amino acid-utilizing Eubacterium acidaminophilum al-2 (DSM 3953). Genome Announcements, 2(3): e00573–14
https://doi.org/10.1128/genomeA.00573-14 pmid: 24926057
30 D T Reed, S E Pepper, M K Richmann, G Smith, R Deo, B E Rittmann (2007). Subsurface bio-mediated reduction of higher-valent uranium and plutonium. Journal of Alloys and Compounds, 444–445: 376–382
https://doi.org/10.1016/j.jallcom.2007.06.015
31 S Santos, G Ungureanu, R Boaventura, C Botelho (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521-522: 246–260
https://doi.org/10.1016/j.scitotenv.2015.03.107 pmid: 25847169
32 M Satomi, B Kimura, T Hamada, S Harayama, T Fujii (2002). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: Emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. International Journal of Systematic and Evolutionary Microbiology, 52(3): 739–747
pmid: 12054233
33 S Soda, A Hasegawa, M Kuroda, A Hanada, M Yamashita, M Ike (2015). Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction. Water Science and Technology, 72(8): 1294–1300
https://doi.org/10.2166/wst.2015.339 pmid: 26465298
34 S Soda, M Kashiwa, T Kagami, M Kuroda, M Yamashita, M Ike (2011). Laboratory-scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination, 279(1–3): 433–438
https://doi.org/10.1016/j.desal.2011.06.031
35 S Soda, W Ma, M Kuroda, H Nishikawa, Y Zhang, M Ike (2018). Characterization of moderately halotolerant selenate- and tellurite-reducing bacteria isolated from brackish areas in Osaka. Bioscience, Biotechnology, and Biochemistry, 82(1): 173–181
https://doi.org/10.1080/09168451.2017.1406794 pmid: 29199549
36 L C Staicu, E D van Hullebusch, P N L Lens, E A H Pilon-Smits, M A Oturan (2015a). Electrocoagulation of colloidal biogenic selenium. Environmental Science and Pollution Research International, 22(4): 3127–3137
https://doi.org/10.1007/s11356-014-3592-2 pmid: 25233921
37 L C Staicu, E D van Hullebusch, M A Oturan, C J Ackerson, P N L Lens (2015b). Removal of colloidal biogenic selenium from wastewater. Chemosphere, 125: 130–138
https://doi.org/10.1016/j.chemosphere.2014.12.018 pmid: 25559175
38 G Subedi, J Taylor, I Hatam, S A Baldwin (2017). Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria. Chemosphere, 183: 536–545
https://doi.org/10.1016/j.chemosphere.2017.05.144 pmid: 28570897
39 K Takada, T Shiba, T Yamaguchi, Y Akane, Y Nakayama, S Soda, D Inoue, M Ike (2018). Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors. Bioresource Technology, 259: 259–267
https://doi.org/10.1016/j.biortech.2018.03.051 pmid: 29571169
40 A Ueki, K Goto, Y Ohtaki, N Kaku, K Ueki (2017). Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. International Journal of Systematic and Evolutionary Microbiology, 67(10): 4146–4153
https://doi.org/10.1099/ijsem.0.002268 pmid: 28905695
41 E D Van Hullebusch (2017). Bioremediation of Selenium Contaminated Wastewater. Cham: Springer Nature,
42 S Van Trappen, T L Tan, E Samyn, P Vandamme (2005). Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA. International Journal of Systematic and Evolutionary Microbiology, 55(6): 2571–2575
https://doi.org/10.1099/ijs.0.63849-0 pmid: 16280529
43 R Yan, D Gauthier, G Flamant, G Peraudeau, J Lu, C Zheng (2001). Fate of selenium in coal combustion: Volatilization and speciation in the flue gas. Environmental Science & Technology, 35(7): 1406–1410
https://doi.org/10.1021/es0001005 pmid: 11348075
44 D Zannoni, F Borsetti, J J Harrison, R J Turner (2008). The bacterial response to the chalcogen metalloids Se and Te. Advances in Microbial Physiology, 53: 1–72
pmid: 17707143
45 Y Zhang, M Kuroda, S Arai, F Kato, D Inoue, M Ike (2019b). Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Research, 154: 327–335
https://doi.org/10.1016/j.watres.2019.01.059 pmid: 30818098
46 Y Zhang, M Kuroda, Y Nakatani, S Soda, M Ike (2019a). Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. Journal of Bioscience and Bioengineering, 127(5): 618–624
https://doi.org/10.1016/j.jbiosc.2018.11.002 pmid: 30503651
47 Y Q Zhang, Jr W T Frankenberger (1999). Effects of soil moisture, depth, and organic amendments on selenium volatilization. Journal of Environmental Quality, 28(4): 1321–1326
https://doi.org/10.2134/jeq1999.00472425002800040037x
[1] FSE-19062-OF-ZYY_suppl_1 Download
[1] Ling Wang, Chunxue Yang, Sangeetha Thangavel, Zechong Guo, Chuan Chen, Aijie Wang, Wenzong Liu. Enhanced hydrogen production in microbial electrolysis through strategies of carbon recovery from alkaline/thermal treated sludge[J]. Front. Environ. Sci. Eng., 2021, 15(4): 56-.
[2] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[3] Lanhe Zhang, Jing Zheng, Jingbo Guo, Xiaohui Guan, Suiyi Zhu, Yanping Jia, Jian Zhang, Xiaoyu Zhang, Haifeng Zhang. Effects of Al3+ on pollutant removal and extracellular polymeric substances (EPS) under anaerobic, anoxic and oxic conditions[J]. Front. Environ. Sci. Eng., 2019, 13(6): 85-.
[4] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[5] Yanqing Duan, Aijuan Zhou, Kaili Wen, Zhihong Liu, Wenzong Liu, Aijie Wang, Xiuping Yue. Upgrading VFAs bioproduction from waste activated sludge via co-fermentation with soy sauce residue[J]. Front. Environ. Sci. Eng., 2019, 13(1): 3-.
[6] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[7] Xiaolin Sheng, Rui Liu, Xiaoyan Song, Lujun Chen, Kawagishi Tomoki. Comparative study on microbial community in intermittently aerated sequencing batch reactors (SBR) and a traditional SBR treating digested piggery wastewater[J]. Front. Environ. Sci. Eng., 2017, 11(3): 8-.
[8] Yun Zhou, Siqing Xia, Binh T. Nguyen, Min Long, Jiao Zhang, Zhiqiang Zhang. Interactions between metal ions and the biopolymer in activated sludge: quantification and effects of system pH value[J]. Front. Environ. Sci. Eng., 2017, 11(1): 7-.
[9] Ran Yu, Shiwen Zhang, Zhoukai Chen, Chuanyang Li. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement[J]. Front. Environ. Sci. Eng., 2017, 11(1): 10-.
[10] Binbin WANG,Dangcong PENG,Xinyan ZHANG,Xiaochang WANG. Structure and formation of anoxic granular sludge —A string-bag hypothesis[J]. Front. Environ. Sci. Eng., 2016, 10(2): 311-318.
[11] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[12] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[13] Zheng LI,Rong QI,Wei AN,Takashi MINO,Tadashi SHOJI,Willy VERSTRAETE,Jian GU,Shengtao LI,Shiwei XU,Min YANG. Simulation of long-term nutrient removal in a full-scale closed-loop bioreactor for sewage treatment: an example of Bayesian inference[J]. Front. Environ. Sci. Eng., 2015, 9(3): 534-544.
[14] Xi CHEN,Linjiang YUAN,Wenjuan LU,Yuyou LI,Pei LIU,Kun NIE. Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system[J]. Front. Environ. Sci. Eng., 2015, 9(2): 324-333.
[15] Di CUI,Ang LI,Tian QIU,Rui CAI,Changlong PANG,Jihua WANG,Jixian YANG,Fang MA,Nanqi REN. Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature[J]. Front. Environ. Sci. Eng., 2014, 8(6): 937-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed