Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

Postal Subscription Code 80-974

2018 Impact Factor: 1.701

Front. Mater. Sci.    2019, Vol. 13 Issue (3) : 217-241    https://doi.org/10.1007/s11706-019-0465-0
REVIEW ARTICLE
Graphene-based bipolar plates for polymer electrolyte membrane fuel cells
Ram Sevak SINGH1(), Anurag GAUTAM2, Varun RAI3
1. Department of Physics, O P Jindal University, Raigarh, Chhattisgarh 496109, India
2. Department of Chemistry, O P Jindal University, Raigarh, Chhattisgarh 496109, India
3. Department of Materials Science and Engineering, National University of Singapore, Singapore 117576, Singapore
 Download: PDF(3334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bipolar plates (BPs) are a major component of polymer electrolyte membrane fuel cells (PEMFCs). BPs play a multifunctional character within a PEMFC stack. It is one of the most costly and critical part of the fuel cell, and hence the development of efficient and cost-effective BPs is of much interest for the fabrication of next-generation PEMFCs in future. Owing to high electrical conductivity and chemical inertness, graphene is an ideal candidate to be utilized in BPs. This paper reviews recent advances in the area of graphene-based BPs for PEMFC applications. Various aspects including the momentous functions of BPs in the PEMFC, favorable features of graphene-based BPs, performance evaluation of various reported BPs with their advantages and disadvantages, challenges at commercial level products and future prospects of frontier research in this direction are extensively documented.

Keywords graphene      bipolar plate      polymer electrolyte membrane fuel cell      proton exchange membrane fuel cell     
Corresponding Author(s): Ram Sevak SINGH   
Online First Date: 23 September 2019    Issue Date: 29 September 2019
 Cite this article:   
Ram Sevak SINGH,Anurag GAUTAM,Varun RAI. Graphene-based bipolar plates for polymer electrolyte membrane fuel cells[J]. Front. Mater. Sci., 2019, 13(3): 217-241.
 URL:  
https://academic.hep.com.cn/foms/EN/10.1007/s11706-019-0465-0
https://academic.hep.com.cn/foms/EN/Y2019/V13/I3/217
Fig.1  Schematic showing the basic design of a PEMFC and its working principle.
Fig.2  (a)Icorr (corrosion current density) of several reported BPs. (b) ICR (interfacial contact resistance) of several reported BPs at 100–200 N·cm−2. The dot lines present the US-DOE 2020 targets of Icorr (<1 µA·cm−2) and ICR (<10 mΩ·cm2).
Fig.3  Power density of PEMFCs with several reported BPs. The dot line presents the US-DOE 2020 target of power density (>1 W·cm−2) of PEMFCs.
Material Disadvantages
Graphite Brittleness (poor mechanical strength), high weight and volume, and high processing cost
Metal Poor corrosion resistance or low surface conductivity (high ICR) due to the formation of protective surface oxide, and contamination of polymer membrane by dissolved metal ions (catalyst poisoning)
Carbon/carbon composites Low bulk electrical conductivity, low mechanical strength, and high cost
Polymer/metal composites Low electrical conductivity
Polymer/graphite composites Large volume and low corrosion resistance
Carbon/polymer composites Low electrical conductivity and mechanical strength
Stainless steel (SS) Inferior corrosion resistance or high ICR due to the formation of protective oxide films
a-C/SS Difficulty in mass production, corrosion resistance and ICR are generally does not meet the benchmark values (Icorr<1 µA·cm−2, ICR<10 mΩ·cm2)
Polymer/SS Inferior electrical conductivity
Gold/SS High cost
TiCx/a-C High cost, and challenges in mass production
TiN/Ti Highly expensive
TiN/SS High cost of processing
Fe/Ni/Cr Poor corrosion resistance and high ICR
SS/Zr2N2O High processing cost, and relatively low surface conductivity
Nb, Ti, Hf, Zr and Ta Too expensive for commercialization
Metal foams, carbon cloth Low corrosion resistance, high ICR, and complexity in mass production
Tab.1  Disadvantages of various bipolar plates
Fig.4  (a) Beneficial features of graphene-based BPs. Schematics showing graphene used (b) as coatings onto metallic BPs and (c) as conducting fillers in composite BPs.
Fig.5  (a) Corrosion rate of uncoated Cu and CVD grown graphene on Cu. (b) Corrosion rate of uncoated Ni and transferred two-layer graphene (tr2Gr/Ni) and four-layer graphene (tr4Gr/Ni) onto Ni. (Reproduced from Ref. [96] with permission of American Chemical Society)
Fig.6  STM images of CVD grown graphene on Pt(1 0 0) after corrosion tests in 0.513 mol·L−1 NaCl: (a)(b) corrosion tests at room temperature; (c) corrosion test at 60 °C. (Reproduced from Ref. [89] with permission of Royal Society of Chemistry)
Fig.7  (a) Photograph of graphene grown on Ni foam. (b) SEM image of graphene-coated Ni foam. (c) The schematic diagram of a single PEMFC consisting of graphene-coated Ni foam embedded within the groove of a graphite BP. (Reproduced from Ref. [126] with permission of Royal Society of Chemistry)
Fig.8  (a) Corrosion analysis (Tafel plot) of graphene-coated Ni foam (red curve) in an environment (H2SO4 (pH 1–1.5) + 2 ppm HF at 60 °C) simulating PEMFC operating conditions after 100 CV sweeps between −0.8 and+1.0 V (vs. OCP) at the scan rate of 25 mV·s−1. The black and blue curves represent Tafel plots of bare Ni foam and a-C/Ni foam, respectively. (b) SEM image of the graphene-coated Ni foam after corrosion test. The inset shows Raman spectra of graphene acquired from the graphene-coated Ni foam samples before and after corrosion tests. (Reproduced from Ref. [126] with permission of Royal Society of Chemistry)
Bipolar plate Corrosion environment Icorr
/(µA?cm−2)
ICR
/(mΩ?cm2)
P
/(mΩ?cm−2)
Ref.
G/Ni-SS304 (CVD, multilayer G) 3.5% NaCl@RT 0.163 36 [99]
G/SS304 3.5% NaCl@RT 35.2 [99]
SS304 3.5% NaCl@RT 7.41 560 [99]
G/Cu (CVD, single layer G) PEMFC 415 [104]
Cu PEMFC 235 [104]
G/Cu (CVD, single layer G) 0.1 mol?L−1 NaCl@RT 0.28 [106]
Cu 0.1 mol?L−1 NaCl@RT 0.65 [106]
G/Al (transferred single layer G) 0.1 mol?L−1 NaCl@RT 2.8 [106]
G/Al (double layer G) 0.1 mol?L−1 NaCl@RT 3.0 [106]
G/Al (triple layer G) 0.1 mol?L−1 NaCl@RT 0.90 [106]
G/Al (quadruple layer G) 0.1 mol?L−1 NaCl@RT 1.80 [106]
Al 0.1 mol?L−1 NaCl@RT 0.23 [106]
rGO/SS316L 0.1 N H2SO4 + 2 ppm F@80 °C 0.132 300 [107]
SS316L 0.1 N H2SO4 + 2 ppm F@80 °C 0.14 120 [107]
Graphite 0.1 N H2SO4 + 2 ppm F@80 °C 720.6 [107]
GO/Cu/MS (0.125 g·L−1 GO) 3.5% NaCl@RT 24.07 [110]
GO/Cu/MS (0.25 g·L−1 GO) 3.5% NaCl@RT 13.23 [110]
GO/Cu/MS (1 g·L−1 GO) 3.5% NaCl@RT 10.03 [110]
Cu/MS 3.5% NaCl@RT 68.60 [110]
Bare MS 3.5% NaCl@RT 316.5 [110]
rGO/Al (PVA-added coating) 0.5 mol?L−1 H2SO4@RT 0.003 [112]
rGO/Al (direct coating) 0.5 mol?L−1 H2SO4@RT 0.076 [112]
Bare Al 0.5 mol?L−1 H2SO4@RT 0.62 [112]
rGO/Al 2024 (spin coating) 3.5% NaCl@RT 0.254 [114]
Al 2024 3.5% NaCl@RT 719 [114]
rGO/Al (dip coating) 0.5 mol?L−1 NaCl@RT 0.0083 [115]
Al 0.5 mol?L−1 NaCl@RT 10.316 [115]
rGO/Sn/MS (electrodeposition) 3.5% NaCl@RT 0.815 [116]
Sn/MS 3.5% NaCl@RT 1.365 [116]
GO/Co/MS (electrodeposition) 3.5% NaCl@RT 3.04 [117]
Co/MS 3.5% NaCl@RT 9.70 [117]
rGO/Ni–P/MS 3.5% NaCl@RT 0.996 [119]
Ni–P/MS 3.5% NaCl@RT 1.803 [118]
G/Ni foam (CVD, multilayer G) H2SO4 (pH ~ 3) + 2 ppm HF@50 °C 640.8 [42]
TiN/Ni foam H2SO4 (pH ~ 3) + 2 ppm HF@50 °C 617.4 [42]
Au/Ni foam H2SO4 (pH ~ 3) + 2 ppm HF@50 °C 595.8 [42]
G/Ni foam (CVD, multilayer G) H2SO4 (pH ~ 3) + 2 ppm HF@80 °C 0.65 [42]
Ni foam H2SO4 (pH ~ 3) + 2 ppm HF@80 °C 3.5 [42]
TiN/Ni foam H2SO4 (pH ~ 3) + 2 ppm HF@80 °C 1.03 [42]
Au/Ni foam H2SO4 (pH ~ 3) + 2 ppm HF@80 °C 2.07 [42]
G/Ni foam (RTA, multilayer G) H2SO4 (pH ~ 1.5) + 2 ppm HF@70 °C 2.5 9.3 967 [126]
Ni foam H2SO4 (pH ~ 1.5) + 2 ppm HF@70 °C 98 521 [126]
a-C/Ni foam H2SO4 (pH ~ 1.5) + 2 ppm HF@70 °C 400 873 [126]
Tab.2  Summary of various reported graphene/metal BPs (crucial parameters such as corrosion current density (Icorr), interfacial contact resistance (ICR), and power density (P) of PEMFCs are comparatively presented)
Fig.9  (a) Water absorption of graphene-filled polybenzoxazine composites at various graphene loadings. Curves from top to down showing neat polybenzoxazine, 10, 20, 30, 40, 50 and 60 wt.% graphene loading, respectively. (b) Effect of the graphene contents on electrical conductivity of highly filled graphene/polybenzoxazine composites. (Reproduced from Ref. [128] with permission of Wiley)
Fig.10  (a) Tafel plots showing Icorr (corrosion current density) of optimum (1.5% rGO/30% NPFR/58.5% GP/5% CB/5% CF (1 mm in length)) composite BP at different conditions of PEMFC environment. (b) ICR of the composite BP vs. applied pressure. Here, rGO stands for reduced graphene, NPFR for novolac phenol formaldehyde resins, GP for graphite, CB for carbon black and CF for carbon fiber. (Reproduced from Ref. [133] with permission of Springer)
Bipolar plate Corrosion environment Icorr
/(µA?cm−2)
σ
/(S?cm−1)
ICR
/(mΩ?cm2)
P
/(mW?cm−2)
Ref.
G-NP/PPS (60 wt.% G-NP) a) 1.7 [127]
G-NP(l)/G-NP(s)/CB/PPS b) 114 [127]
G-NP/polybenzoxazine (10 wt.% G-NP) 1.52 [128]
G-NP/polybenzoxazine (20 wt.% G-NP) 2.50 [128]
G-NP/polybenzoxazine (30 wt.% G-NP) 7.42 [128]
G-NP/polybenzoxazine (40 wt.% G-NP) 9.26 [128]
G-NP/polybenzoxazine (50 wt.% G-NP) 125 [128]
G-NP/polybenzoxazine (60 wt.% G-NP) 357 [128]
G-NP/PP (7.5 wt.% G-NP) c) 5.28×10−11 [130]
Graphite/PP (7.5 wt.% graphite) 4.54×10−12 [130]
PP 1.21×10−16 [130]
rGO/PP-MAH/GP/CB/PP (2 wt.% rGO) d) 7.08±0.03 [131]
rGO/PP-MAH/GP/CB/PP (1 wt.% rGO) 9.78±0.15 [131]
rGO/PP-MAH/GP/CB/PP (0.5 wt.% rGO) 7.57±0.42 [131]
PP-MAH/GP/CB/PP 5.3±0.01 [131]
rGO/VER/GP/CB/CF (1 wt.% rGO) e) 1 mol?L−1 H2SO4 + 2 ppm HF@80 °C with O2 and H2 purging 376.03 795 [132]
VER/GP/CB/CF 1 mol?L−1 H2SO4 + 2 ppm HF@80 °C with O2 and H2 purging 355.05 723 [132]
rGO/NPFR/GP/CB/CF (1.5 wt.% rGO) f) 1 mol?L−1 H2SO4 + 2 ppm HF@80 °C with O2 and H2 purging 0.912 (anode), 0.988 (cathode) 319.42 14.73 342 [133]
NPFR/GP/CB/CF 1 mol?L−1 H2SO4+ 2 ppm HF@80 °C with O2 and H2 purging 0.734 (anode), 0.778 (cathode) 281.97 22.38 303 [133]
Tab.3  Summary of various reported graphene/polymer/metal BPs (crucial parameters such as corrosion current density (Icorr), electrical conductivity (σ), interfacial contact resistance (ICR), and power density (P) of PEMFC are comparatively presented)
Bipolar plate Corrosion environment Icorr/(µA·cm−2) c) Ref.
GO/PPY/SS304 (0.5 mg·mL−1 GO, electrodeposition) a) 0.1 mol·L−1 H2SO4@RT 0.40 [134]
GO/PPY/SS304 (1 mg·mL−1 GO) 0.1 mol·L−1 H2SO4@RT 0.059 [134]
GO/PPY/SS304 (1.5 mg·mL−1 GO) a) 0.1 mol·L−1 H2SO4@RT 0.120 [134]
PPY/SS304 a) 0.1 mol·L−1 H2SO4@RT 0.154 [134]
SS304 a) 0.1 mol·L−1 H2SO4@RT 7.70 [134]
rGO/PIHA/Cu (electrophoretic deposition) b) 3.5 wt.% NaCl@RT 4.0 [135]
Cu 3.5 wt.% NaCl@RT 38.25 [135]
Tab.4  Summary of various reported graphene/polymer/metal BPs
1 J Wind, R Späh, W Kaiser, et al.. Metallic bipolar plates for PEM fuel cells. Journal of Power Sources, 2002, 105(2): 256–260
https://doi.org/10.1016/S0378-7753(01)00950-8
2 I Bar-On, R Kirchain, R Roth. Technical cost analysis for PEM fuel cells. Journal of Power Sources, 2002, 109(1): 71–75
https://doi.org/10.1016/S0378-7753(02)00062-9
3 H Lv, S Mu. Nano-ceramic support materials for low temperature fuel cell catalysts. Nanoscale, 2014, 6(10): 5063–5074
https://doi.org/10.1039/C4NR00402G pmid: 24728144
4 M Wei, M Jiang, X Liu, et al.. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance. Journal of Power Sources, 2016, 327: 384–393
https://doi.org/10.1016/j.jpowsour.2016.07.083
5 V Mehta, J S Cooper. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 2003, 114(1): 32–53
https://doi.org/10.1016/S0378-7753(02)00542-6
6 X Li, I Sabir. Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 2005, 30(4): 359–371
https://doi.org/10.1016/j.ijhydene.2004.09.019
7 D Davies, P Adcock, M Turpin, et al.. Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources, 2000, 86(1–2): 237–242
https://doi.org/10.1016/S0378-7753(99)00524-8
8 D Busick, M Wilson. Development of composite materials for PEFC bipolar plates. MRS Online Proceedings Library Archive, 1999, 575
https://doi.org/10.1557/proc-575-247
9 A Heinzel, F Mahlendorf, O Niemzig, et al.. Injection moulded low cost bipolar plates for PEM fuel cells. Journal of Power Sources, 2004, 131(1–2): 35–40
https://doi.org/10.1016/j.jpowsour.2004.01.014
10 R L Borup, N E Vanderborgh. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. MRS Online Proceedings Library Archive, 1995, 393
11 S J Lee, C H Huang, J J Lai, et al.. Corrosion-resistant component for PEM fuel cells. Journal of Power Sources, 2004, 131(1–2): 162–168
https://doi.org/10.1016/j.jpowsour.2004.01.008
12 F Dundar, E Dur, S Mahabunphachai, et al.. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates. Journal of Power Sources, 2010, 195(11): 3546–3552
https://doi.org/10.1016/j.jpowsour.2009.12.040
13 C K Jin, C G Kang. Fabrication by vacuum die casting and simulation of aluminum bipolar plates with micro-channels on both sides for proton exchange membrane (PEM) fuel cells. International Journal of Hydrogen Energy, 2012, 37(2): 1661–1676
https://doi.org/10.1016/j.ijhydene.2011.10.050
14 J C Hung, D H Chang, Y Chuang. The fabrication of high-aspect-ratio micro-flow channels on metallic bipolar plates using die-sinking micro-electrical discharge machining. Journal of Power Sources, 2012, 198: 158–163
https://doi.org/10.1016/j.jpowsour.2011.09.065
15 N Deprez, D McLachlan. The analysis of the electrical conductivity of graphite conductivity of graphite powders during compaction. Journal of Physics D: Applied Physics, 1988, 21(1): 101–107
https://doi.org/10.1088/0022-3727/21/1/015
16 D Davies, P Adcock, M Turpin, et al.. Bipolar plate materials for solid polymer fuel cells. Journal of Applied Electrochemistry, 2000, 30(1): 101–105
https://doi.org/10.1023/A:1003831406406
17 S Dhakate, R Mathur, B Kakati, et al.. Properties of graphite-composite bipolar plate prepared by compression molding technique for PEM fuel cell. International Journal of Hydrogen Energy, 2007, 32(17): 4537–4543
https://doi.org/10.1016/j.ijhydene.2007.02.017
18 K Roßberg, V Trapp. Graphite-based bipolar plates. In: Vielstich W, Gasteiger H A, Lamm A, et al.., eds. Handbook of Fuel Cells — Fundamentals, Technology and Applications. John Wiley & Sons, Ltd., 2010
19 E Cho, U S Jeon, H Ha, et al.. Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2004, 125(2): 178–182
https://doi.org/10.1016/j.jpowsour.2003.08.039
20 H C Kuan, C C M Ma, K H Chen, et al.. Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. Journal of Power Sources, 2004, 134(1): 7–17
https://doi.org/10.1016/j.jpowsour.2004.02.024
21 D Hodgson, B May, P Adcock, et al.. New lightweight bipolar plate system for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2001, 96(1): 233–235
https://doi.org/10.1016/S0378-7753(01)00568-7
22 D He, H Tang, Z Kou, et al.. Engineered graphene materials: synthesis and applications for polymer electrolyte membrane fuel cells. Advanced Materials, 2017, 29(20): 1601741
https://doi.org/10.1002/adma.201601741 pmid: 27996174
23 Y Hung, H Tawfik, K M El-Khatib, et al.. Corrosion and contact resistance measurements of different bipolar plate material for polymer electrolyte membrane fuel cells. International Journal of Alternative Propulsion, 2008, 2(1): 72–85
https://doi.org/10.1504/IJAP.2008.019694
24 D Zhang, L Duan, L Guo, et al.. TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. International Journal of Hydrogen Energy, 2011, 36(15): 9155–9161
https://doi.org/10.1016/j.ijhydene.2011.04.123
25 F Bi, L Peng, P Yi, et al.. Multilayered Zr–C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells. Journal of Power Sources, 2016, 314: 58–65
https://doi.org/10.1016/j.jpowsour.2016.02.078
26 P Yi, W Zhang, F Bi, et al.. Enhanced corrosion resistance and interfacial conductivity of TiCx/a-C nanolayered coatings via synergy of substrate bias voltage for bipolar plates applications in PEMFCs. ACS Applied Materials & Interfaces, 2018, 10(22): 19087–19096
https://doi.org/10.1021/acsami.8b00514
27 J Jayaraj, Y Kim, K Kim, et al.. Corrosion studies on Fe-based amorphous alloys in simulated PEM fuel cell environment. Science and Technology of Advanced Materials, 2005, 6(3–4): 282–289
https://doi.org/10.1016/j.stam.2005.02.019
28 D Zhang, Z Wang, K Huang. Composite coatings with in situ formation for Fe–Ni–Cr alloy as bipolar plate of PEMFC. International Journal of Hydrogen Energy, 2013, 38(26): 11379–11391
https://doi.org/10.1016/j.ijhydene.2013.06.112
29 M Omrani, M Habibi, R Amrollahi, et al.. Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus. International Journal of Hydrogen Energy, 2012, 37(19): 14676–14686
https://doi.org/10.1016/j.ijhydene.2012.06.048
30 W Yoon, X Huang, P Fazzino, et al.. Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008, 179(1): 265–273
https://doi.org/10.1016/j.jpowsour.2007.12.034
31 S Wang, M Hou, Q Zhao, et al.. Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2017, 26(1): 168–174
https://doi.org/10.1016/j.jechem.2016.09.004
32 K Feng, Y Shen, H Sun, et al.. Conductive amorphous carbon-coated 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2009, 34(16): 6771–6777
https://doi.org/10.1016/j.ijhydene.2009.06.030
33 H Wang, M A Sweikart, J A Turner. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2003, 115(2): 243–251
https://doi.org/10.1016/S0378-7753(03)00023-5
34 R Silva, D Franchi, A Leone, et al.. Surface conductivity and stability of metallic bipolar plate materials for polymer electrolyte fuel cells. Electrochimica Acta, 2006, 51(17): 3592–3598
https://doi.org/10.1016/j.electacta.2005.10.015
35 S Joseph, J McClure, R Chianelli, et al.. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). International Journal of Hydrogen Energy, 2005, 30(12): 1339–1344
https://doi.org/10.1016/j.ijhydene.2005.04.011
36 L Wang, J Sun, B Kang, et al.. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate. Journal of Power Sources, 2014, 246: 775–782
https://doi.org/10.1016/j.jpowsour.2013.08.025
37 S H Wang, J Peng, W B Lui, et al.. Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells. Journal of Power Sources, 2006, 162(1): 486–491
https://doi.org/10.1016/j.jpowsour.2006.06.084
38 S Gamburzev, A J Appleby. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2002, 107(1): 5–12
https://doi.org/10.1016/S0378-7753(01)00970-3
39 A Kumar, R G Reddy. Materials and design development for bipolar/end plates in fuel cells. Journal of Power Sources, 2004, 129(1): 62–67
https://doi.org/10.1016/j.jpowsour.2003.11.011
40 E Cho, U S Jeon, S A Hong, et al.. Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. Journal of Power Sources, 2005, 142(1–2): 177–183
https://doi.org/10.1016/j.jpowsour.2004.10.032
41 P Yi, L Peng, L Feng, et al.. Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates. Journal of Power Sources, 2010, 195(20): 7061–7066
https://doi.org/10.1016/j.jpowsour.2010.05.019
42 Y H Lee, S M Li, C J Tseng, et al.. Graphene as corrosion protection for metal foam flow distributor in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22201–22207
https://doi.org/10.1016/j.ijhydene.2017.03.233
43 C J Tseng, B T Tsai, Z S Liu, et al.. A PEM fuel cell with metal foam as flow distributor. Energy Conversion and Management, 2012, 62: 14–21
https://doi.org/10.1016/j.enconman.2012.03.018
44 S J Lee, C H Huang, Y P Chen. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell. Journal of Materials Processing Technology, 2003, 140(1–3): 688–693
https://doi.org/10.1016/S0924-0136(03)00743-X
45 L Gladczuk, C Joshi, A Patel, et al.. Corrosion-resistant tantalum coatings for PEM fuel cell bipolar plates. MRS Online Proceedings Library Archive, 2002, 756
https://doi.org/10.1557/PROC-756-FF7.2
46 L Ma, S Warthesen, D A Shores. Evaluation of materials for bipolar plates in PEMFCs. Journal of New Materials for Electrochemical Systems, 2000, 3(3): 221–228
https://doi.org/10.1023/A:1004070303697
47 H Wang, J Turner. Reviewing metallic PEMFC bipolar plates. Fuel Cells, 2010, 10(4): 510–519
https://doi.org/10.1002/fuce.200900187
48 P L Hentall, J B Lakeman, G O Mepsted, et al.. New materials for polymer electrolyte membrane fuel cell current collectors. Journal of Power Sources, 1999, 80(1–2): 235–241
https://doi.org/10.1016/S0378-7753(98)00264-X
49 R Hornung, G Kappelt. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells. Journal of Power Sources, 1998, 72(1): 20–21
https://doi.org/10.1016/S0378-7753(97)02774-2
50 J Scholta, B Rohland, V Trapp, et al.. Investigations on novel low-cost graphite composite bipolar plates. Journal of Power Sources, 1999, 84(2): 231–234
https://doi.org/10.1016/S0378-7753(99)00322-5
51 J Scholta, N Berg, P Wilde, et al.. Development and performance of a 10 kW PEMFC stack. Journal of Power Sources, 2004, 127(1–2): 206–212
https://doi.org/10.1016/j.jpowsour.2003.09.040
52 T M Besmann, J W Klett, T D Burchell. Carbon composite for a PEM fuel cell bipolar plate. MRS Online Proceedings Library Archive, 1997, 496
https://doi.org/10.1557/proc-496-243
53 N Cunningham, D Guay, J Dodelet, et al.. New materials and procedures to protect metallic PEM fuel cell bipolar plates. Journal of the Electrochemical Society, 2002, 149(7): A905–A911
https://doi.org/10.1149/1.1482767
54 A Gautam, S Ram. Shape-controlled silver metal of nanospheroids from a polymer-assisted autocombustion reaction in open air. Journal of Alloys and Compounds, 2008, 463(1–2): 428–434
https://doi.org/10.1016/j.jallcom.2007.09.051
55 H Chang, P Koschany, C Lim, et al.. Materials and processes for light weight and high power density PEM fuel cells. Journal of New Materials for Electrochemical Systems, 2000, 3(1): 55–60
56 H Tawfik, Y Hung, D Mahajan. Metal bipolar plates for PEM fuel cell — a review. Journal of Power Sources, 2007, 163(2): 755–767
https://doi.org/10.1016/j.jpowsour.2006.09.088
57 M Brady, K Weisbrod, C Zawodzinski, et al.. Assessment of thermal nitridation to protect metal bipolar plates in polymer electrolyte membrane fuel cells. Electrochemical and Solid-State Letters, 2002, 5(11): A245–A247
https://doi.org/10.1149/1.1509561
58 M P Brady, K Weisbrod, I Paulauskas, et al.. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates. Scripta Materialia, 2004, 50(7): 1017–1022
https://doi.org/10.1016/j.scriptamat.2003.12.028
59 M Li, S Luo, C Zeng, et al.. Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments. Corrosion Science, 2004, 46(6): 1369–1380
https://doi.org/10.1016/S0010-938X(03)00187-2
60 E Middelman, W Kout, B Vogelaar, et al.. Bipolar plates for PEM fuel cells. Journal of Power Sources, 2003, 118(1–2): 44–46
https://doi.org/10.1016/S0378-7753(03)00070-3
61 R Taherian. A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection. Journal of Power Sources, 2014, 265: 370–390
https://doi.org/10.1016/j.jpowsour.2014.04.081
62 A Hermann, T Chaudhuri, P Spagnol. Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005, 30(12): 1297–1302
https://doi.org/10.1016/j.ijhydene.2005.04.016
63 B C Steele, A Heinzel. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352
https://doi.org/10.1038/35104620 pmid: 11713541
64 S S Dihrab, K Sopian, M Alghoul, et al.. Review of the membrane and bipolar plates materials for conventional and unitized regenerative fuel cells. Renewable & Sustainable Energy Reviews, 2009, 13(6–7): 1663–1668
https://doi.org/10.1016/j.rser.2008.09.029
65 X Z Yuan, H Wang, J Zhang, et al.. Bipolar plates for PEM fuel cells-from materials to processing. Journal of New Materials for Electrochemical Systems, 2005, 8(4): 257
66 A Iwan, M Malinowski, G Pasciak. Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renewable & Sustainable Energy Reviews, 2015, 49: 954–967
https://doi.org/10.1016/j.rser.2015.04.093
67 A K Geim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849 pmid: 17330084
68 K S Novoselov, A K Geim, S V Morozov, et al.. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
69 R S Singh, V Nalla, W Chen, et al.. Laser patterning of epitaxial graphene for Schottky junction photodetectors. ACS Nano, 2011, 5(7): 5969–5975
https://doi.org/10.1021/nn201757j pmid: 21702443
70 R S Singh, V Nalla, W Chen, et al.. Photoresponse in epitaxial graphene with asymmetric metal contacts. Applied Physics Letters, 2012, 100(9): 093116 (3 pages)
https://doi.org/10.1063/1.3692107
71 R S Singh, X Wang, W Chen, et al.. Large room-temperature quantum linear magnetoresistance in multilayered epitaxial graphene: Evidence for two-dimensional magnetotransport. Applied Physics Letters, 2012, 101(18): 183105 (3 pages)
https://doi.org/10.1063/1.4765656
72 R S Singh, D Li, Q Xiong, et al.. Anomalous photoresponse in the deep-ultraviolet due to resonant excitonic effects in oxygen plasma treated few-layer graphene. Carbon, 2016, 106: 330–335
https://doi.org/10.1016/j.carbon.2016.05.026
73 I Santoso, R S Singh, P K Gogoi, et al.. Tunable optical absorption and interactions in graphene via oxygen plasma. Physical Review B, 2014, 89(7): 075134
https://doi.org/10.1103/PhysRevB.89.075134
74 Z S Wu, W Ren, L Gao, et al.. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 2009, 3(2): 411–417
https://doi.org/10.1021/nn900020u pmid: 19236079
75 A Peigney, C Laurent, E Flahaut, et al.. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507–514
https://doi.org/10.1016/S0008-6223(00)00155-X
76 C Lee, X Wei, J W Kysar, et al.. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996 pmid: 18635798
77 A A Balandin, S Ghosh, W Bao, et al.. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907
https://doi.org/10.1021/nl0731872 pmid: 18284217
78 J R Williams, L Dicarlo, C M Marcus. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science, 2007, 317(5838): 638–641
https://doi.org/10.1126/science.1144657 pmid: 17600183
79 K S Novoselov, A K Geim, S V Morozov, et al.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896 pmid: 15499015
80 S Stankovich, D A Dikin, R D Piner, et al.. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
81 Y Hernandez, V Nicolosi, M Lotya, et al.. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 2008, 3(9): 563–568
https://doi.org/10.1038/nnano.2008.215 pmid: 18772919
82 W S Hummers, R E Offeman. Preparation of graphitic oxide. Journal of the American Chemical Society, 1958, 80(6): 1339
https://doi.org/10.1021/ja01539a017
83 M Choucair, P Thordarson, J A Stride. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 2009, 4(1): 30–33
https://doi.org/10.1038/nnano.2008.365 pmid: 19119279
84 A N Obraztsov. Chemical vapour deposition: Making graphene on a large scale. Nature Nanotechnology, 2009, 4(4): 212–213
https://doi.org/10.1038/nnano.2009.67 pmid: 19350025
85 P W Sutter, J I Flege, E A Sutter. Epitaxial graphene on ruthenium. Nature Materials, 2008, 7(5): 406–411
https://doi.org/10.1038/nmat2166 pmid: 18391956
86 Z Kou, T Meng, B Guo, et al.. A generic conversion strategy: From 2D metal carbides (MxCy) to M-self-doped graphene toward high-efficiency energy applications. Advanced Functional Materials, 2017, 27(8): 1604904
https://doi.org/10.1002/adfm.201604904
87 I S Amiinu, J Zhang, Z Kou, et al.. Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Applied Materials & Interfaces, 2016, 8(43): 29408–29418
https://doi.org/10.1021/acsami.6b08719 pmid: 27740758
88 D He, Z Kou, Y Xiong, et al.. Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts. Carbon, 2014, 66: 312–319
https://doi.org/10.1016/j.carbon.2013.09.005
89 L Kyhl, S F Nielsen, A G Čabo, et al.. Graphene as an anti-corrosion coating layer. Faraday Discussions, 2015, 180: 495–509
https://doi.org/10.1039/C4FD00259H pmid: 25915827
90 Y Zhang, H Zhang, B Wang, et al.. Role of wrinkles in the corrosion of graphene domain-coated Cu surfaces. Applied Physics Letters, 2014, 104(14): 143110 (3 pages)
https://doi.org/10.1063/1.4871000
91 W Xu, K Zhao, L Zhang, et al.. SnS2@graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries. Journal of Alloys and Compounds, 2016, 654: 357–362
https://doi.org/10.1016/j.jallcom.2015.09.050
92 Y P Hsieh, M Hofmann, K W Chang, et al.. Complete corrosion inhibition through graphene defect passivation. ACS Nano, 2014, 8(1): 443–448
https://doi.org/10.1021/nn404756q pmid: 24359599
93 I Wlasny, P Dabrowski, M Rogala, et al.. Role of graphene defects in corrosion of graphene-coated Cu(111) surface. Applied Physics Letters, 2013, 102(11): 111601 (3 pages)
https://doi.org/10.1063/1.4795861
94 R Rozada, J I Paredes, S Villar-Rodil, et al.. Towards full repair of defects in reduced graphene oxide films by two-step graphitization. Nano Research, 2013, 6(3): 216–233
https://doi.org/10.1007/s12274-013-0298-6
95 X Li, W Cai, J An, et al.. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324(5932): 1312–1314
https://doi.org/10.1126/science.1171245 pmid: 19423775
96 D Prasai, J C Tuberquia, R R Harl, et al.. Graphene: corrosion-inhibiting coating. ACS Nano, 2012, 6(2): 1102–1108
https://doi.org/10.1021/nn203507y pmid: 22299572
97 X Ye, Z Lin, H Zhang, et al.. Protecting carbon steel from corrosion by laser in situ grown graphene films. Carbon, 2015, 94: 326–334
https://doi.org/10.1016/j.carbon.2015.06.080
98 M Nazarova, T Stora, A Zhukov, et al.. Growth of graphene on tantalum and its protective properties. Carbon, 2018, 139: 29–34
https://doi.org/10.1016/j.carbon.2018.06.027
99 N W Pu, G N Shi, Y M Liu, et al.. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. Journal of Power Sources, 2015, 282: 248–256
https://doi.org/10.1016/j.jpowsour.2015.02.055
100 R A Antunes, M C L Oliveira, G Ett, et al.. Corrosion of metal bipolar plates for PEM fuel cells: a review. International Journal of Hydrogen Energy, 2010, 35(8): 3632–3647
https://doi.org/10.1016/j.ijhydene.2010.01.059
101 J Sudagar, J Lian, W Sha. Electroless nickel, alloy, composite and nano coatings—A critical review. Journal of Alloys and Compounds, 2013, 571: 183–204
https://doi.org/10.1016/j.jallcom.2013.03.107
102 A C Stoot, L Camilli, S A Spiegelhauer, et al.. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. Journal of Power Sources, 2015, 293: 846–851
https://doi.org/10.1016/j.jpowsour.2015.06.009
103 Y Ren, M Anisur, W Qiu, et al.. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study. Journal of Power Sources, 2017, 362: 366–372
https://doi.org/10.1016/j.jpowsour.2017.07.041
104 Y H Lee, S Noh, J H Lee, et al.. Durable graphene-coated bipolar plates for polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2017, 42(44): 27350–27353
https://doi.org/10.1016/j.ijhydene.2017.09.053
105 Z Zheng, Y Liu, Y Bai, et al.. Fabrication of biomimetic hydrophobic patterned graphene surface with ecofriendly anti-corrosion properties for Al alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500: 64–71
https://doi.org/10.1016/j.colsurfa.2016.04.008
106 V Mišković-Stanković, I Jevremović, I Jung, et al.. Electrochemical study of corrosion behavior of graphene coatings on copper and aluminum in a chloride solution. Carbon, 2014, 75: 335–344
https://doi.org/10.1016/j.carbon.2014.04.012
107 Y J Kim, D H Kim, J S Kim, et al.. Electro and surface properties of graphene-modified stainless steel for PEMFC bipolar plates. Advanced Materials Research, 2014, 167–170
https://doi.org/10.4028/www.scientific.net/AMR.905.167
108 L Staudenmaier. Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry, 1899, 32(2): 1394–1399 (in German)
https://doi.org/10.1002/cber.18990320208
109 J Lv, L Tongxiang, W Chen. The effects of molybdenum and reduced graphene oxide on corrosion resistance of amorphous nickel–phosphorus as bipolar plates in PEMFC environment. International Journal of Hydrogen Energy, 2016, 41(23): 9738–9745
https://doi.org/10.1016/j.ijhydene.2016.03.104
110 Y Raghupathy, A Kamboj, M Rekha, et al.. Copper–graphene oxide composite coatings for corrosion protection of mild steel in 3.5% NaCl. Thin Solid Films, 2017, 636: 107–115
https://doi.org/10.1016/j.tsf.2017.05.042
111 M Hirata, T Gotou, S Horiuchi, et al.. Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles. Carbon, 2004, 42(14): 2929–2937
https://doi.org/10.1016/S0008-6223(04)00444-0
112 H Jang, J H Kim, H Kang, et al.. Reduced graphene oxide as a protection layer for Al. Applied Surface Science, 2017, 407: 1–7
https://doi.org/10.1016/j.apsusc.2017.02.041
113 A S S Pavan, S R Ramanan. A study on corrosion resistant graphene films on low alloy steel. Applied Nanoscience, 2016, 6(8): 1175–1181
https://doi.org/10.1007/s13204-016-0530-2
114 Y Liu, J Zhang, S Li, et al.. Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Advances, 2014, 4(85): 45389–45396
https://doi.org/10.1039/C4RA06051B
115 J Liu, L Hua, S Li, et al.. Graphene dip coatings: An effective anticorrosion barrier on aluminum. Applied Surface Science, 2015, 327: 241–245
https://doi.org/10.1016/j.apsusc.2014.11.187
116 R Berlia, M K P Kumar, C Srivastava. Electrochemical behavior of Sn–graphene composite coating. RSC Advances, 2015, 5(87): 71413–71418
https://doi.org/10.1039/C5RA11207A
117 C Liu, F Su, J Liang. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance. Applied Surface Science, 2015, 351: 889–896
https://doi.org/10.1016/j.apsusc.2015.06.018
118 M H Sadhir, M Saranya, M Aravind, et al.. Comparison of in situ and ex situ reduced graphene oxide reinforced electroless nickel phosphorus nanocomposite coating. Applied Surface Science, 2014, 320: 171–176
https://doi.org/10.1016/j.apsusc.2014.09.001
119 H Amani, E Mostafavi, H Arzaghi, et al.. Three-dimensional graphene foams: synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomaterials Science & Engineering, 2019, 5(1): 193–214
https://doi.org/10.1021/acsbiomaterials.8b00658
120 Z Chen, W Ren, L Gao, et al.. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 424–428
https://doi.org/10.1038/nmat3001 pmid: 21478883
121 F Yavari, Z Chen, A V Thomas, et al.. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Scientific Reports, 2011, 1(1): 166
https://doi.org/10.1038/srep00166 pmid: 22355681
122 J K Wang, G M Xiong, M Zhu, et al.. Polymer-enriched 3D graphene foams for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(15): 8275–8283
https://doi.org/10.1021/acsami.5b01440 pmid: 25822669
123 M Loeblein, A Bolker, S H Tsang, et al.. 3D graphene-infused polyimide with enhanced electrothermal performance for long-term flexible space applications. Small, 2015, 11(48): 6425–6434
https://doi.org/10.1002/smll.201502670 pmid: 26479496
124 K Chen, L Shi, Y Zhang, et al.. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chemical Society Reviews, 2018, 47(9): 3018–3036
https://doi.org/10.1039/C7CS00852J pmid: 29484331
125 Z S Wu, A Winter, L Chen, et al.. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Advanced Materials, 2012, 24(37): 5130–5135
https://doi.org/10.1002/adma.201201948 pmid: 22807002
126 Y Sim, J Kwak, S Y Kim, et al.. Formation of 3D graphene–Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(4): 1504–1512
https://doi.org/10.1039/C7TA07598G
127 X Jiang, L T Drzal. Exploring the potential of exfoliated graphene nanoplatelets as the conductive filler in polymeric nanocomposites for bipolar plates. Journal of Power Sources, 2012, 218: 297–306
https://doi.org/10.1016/j.jpowsour.2012.07.001
128 R Plengudomkit, M Okhawilai, S Rimdusit. Highly filled graphene–benzoxazine composites as bipolar plates in fuel cell applications. Polymer Composites, 2016, 37(6): 1715–1727
https://doi.org/10.1002/pc.23344
129 S Rimdusit, C Jubsilp, S. Tiptipakorn Alloys and Composites of Polybenzoxazines: Properties and Applications. Springer, 2013
130 K Onyu, R Yeetsorn, M Fowler, et al.. Evaluation of the possibility for using polypropylene/graphene composite as bipolar plate material instead of polypropylene/graphite composite. KMUTNB: International Journal of Applied Science and Technology, 2016, 9(2): 99–111
https://doi.org/10.14416/j.ijast.2016.02.003
131 A Adloo, M Sadeghi, M Masoomi, et al.. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renewable Energy, 2016, 99: 867–874
https://doi.org/10.1016/j.renene.2016.07.062
132 B K Kakati, A Ghosh, A Verma. Graphene reinforced composite bipolar plate for polymer electrolyte membrane fuel cell. In: American Society of Mechanical Engineers. ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability, 2011, 301–307
133 A Ghosh, P Goswami, P Mahanta, et al.. Effect of carbon fiber length and graphene on carbon–polymer composite bipolar plate for PEMFC. Journal of Solid State Electrochemistry, 2014, 18(12): 3427–3436
https://doi.org/10.1007/s10008-014-2573-1
134 L Jiang, J A Syed, H Lu, et al.. In-situ electrodeposition of conductive polypyrrole–graphene oxide composite coating for corrosion protection of 304SS bipolar plates. Journal of Alloys and Compounds, 2019, 770: 35–47
https://doi.org/10.1016/j.jallcom.2018.07.277
135 B P Singh, S Nayak, K K Nanda, et al.. The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon, 2013, 61: 47–56
https://doi.org/10.1016/j.carbon.2013.04.063
136 B P Singh, B K Jena, S Bhattacharjee, et al.. Development of oxidation and corrosion resistance hydrophobic graphene oxide–polymer composite coating on copper. Surface and Coatings Technology, 2013, 232: 475–481
https://doi.org/10.1016/j.surfcoat.2013.06.004
[1] Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors[J]. Front. Mater. Sci., 2020, 14(4): 353-372.
[2] Zhenxiao LU, Wenxian WANG, Jun ZHOU, Zhongchao BAI. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Front. Mater. Sci., 2020, 14(3): 255-265.
[3] Kun YANG, Jinghuan TIAN, Wei QU, Bo LUAN, Ke LIU, Jun LIU, Likui WANG, Junhui JI, Wei ZHANG. Host-mediated biofilm forming promotes post-graphene pathogen expansion via graphene micron-sheet[J]. Front. Mater. Sci., 2020, 14(2): 221-231.
[4] Huan-Yan XU, Dan LU, Xu HAN. Graphene-induced enhanced anticorrosion performance of waterborne epoxy resin coating[J]. Front. Mater. Sci., 2020, 14(2): 211-220.
[5] Jinxing ZHANG, Kexing HU, Qi OUYANG, Qilin GUI, Xiaonong CHEN. One-step functionalization of graphene via Diels--Alder reaction for improvement of dispersibility[J]. Front. Mater. Sci., 2020, 14(2): 198-210.
[6] Wei SUN, Rui ZHAO, Tian WANG, Ke ZHAN, Zheng YANG, Bin ZHAO, Ya YAN. An approach to prepare uniform graphene oxide/aluminum composite powders by simple electrostatic interaction in water/alcohol solution[J]. Front. Mater. Sci., 2019, 13(4): 375-381.
[7] Xia HE, Qingchun LIU, Jiajun WANG, Huiling CHEN. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics[J]. Front. Mater. Sci., 2019, 13(3): 305-313.
[8] Chaoyuan LIU, Zhongbing HUANG, Ximing PU, Lei SHANG, Guangfu YIN, Xianchun CHEN, Shuang CHENG. Fabrication of carboxylic graphene oxide-composited polypyrrole film for neurite growth under electrical stimulation[J]. Front. Mater. Sci., 2019, 13(3): 258-269.
[9] Bin CAI, Changxiang SHAO, Liangti QU, Yuning MENG, Lin JIN. Preparation of sulfur-doped graphene fibers and their application in flexible fibriform micro-supercapacitors[J]. Front. Mater. Sci., 2019, 13(2): 145-155.
[10] Ruiping LIU, Ning ZHANG, Xinyu WANG, Chenhui YANG, Hui CHENG, Hanqing ZHAO. SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries[J]. Front. Mater. Sci., 2019, 13(2): 186-192.
[11] Maria COROŞ, Florina POGĂCEAN, Lidia MĂGERUŞAN, Crina SOCACI, Stela PRUNEANU. A brief overview on synthesis and applications of graphene and graphene-based nanomaterials[J]. Front. Mater. Sci., 2019, 13(1): 23-32.
[12] Zhongchi WANG, Gongsheng SONG, Jianle XU, Qiang FU, Chunxu PAN. Electrospun titania fibers by incorporating graphene/Ag hybrids for the improved visible-light photocatalysis[J]. Front. Mater. Sci., 2018, 12(4): 379-391.
[13] Infant RAJ, Daniel KIGEN, Wang YANG, Fan YANG, Yongfeng LI. Edge-oriented MoS2 aligned on cellular reduced graphene for enriched dye-sensitized solar cell photovoltaic efficiency[J]. Front. Mater. Sci., 2018, 12(4): 368-378.
[14] Ke ZHAN, Tong YIN, Yuan XUE, Yinwen TAN, Yihao ZHOU, Ya YAN, Bin ZHAO. A two-step approach to synthesis of Co(OH)2/γ-NiOOH/reduced graphene oxide nanocomposite for high performance supercapacitors[J]. Front. Mater. Sci., 2018, 12(3): 273-282.
[15] Jagpreet SINGH, Aditi RATHI, Mohit RAWAT, Manoj GUPTA. Graphene: from synthesis to engineering to biosensor applications[J]. Front. Mater. Sci., 2018, 12(1): 1-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed