Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2020, Vol. 7 Issue (2) : 211-217    https://doi.org/10.15302/J-FASE-2019303
REVIEW
Reflections on the system of evaluation of gene-edited livestock
Ziyao FAN, Tianwen WU, Kui WU, Yulian MU, Kui LI()
State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
 Download: PDF(696 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rapid development of biotechnology has provided a greater understanding of the biological functions of major candidate genes that have important functions regarding economic traits, and new materials for livestock breeding have been obtained through gene editing (GE) and embryo manipulation with the purpose of improving quality and output and reducing the costs and risk of disease. Public concerns, particularly over safety risks and production performance, must be addressed. Evaluation is the most important component of the regulation of gene-edited livestock and is a crucial guarantee of public safety before the marketing of gene-edited animal products. Here, the system of evaluation of gene-edited livestock is discussed in terms of public safety and production performance. The search for safe and ethical applications in the GE of livestock, a case-by-case evaluation strategy, and classification and simplification are used in order to promote a more efficient, objective, comprehensive and operable evaluation system.

Keywords evaluation      gene editing      livestock      performance      safety     
Corresponding Author(s): Kui LI   
Just Accepted Date: 19 February 2020   Online First Date: 12 March 2020    Issue Date: 28 April 2020
 Cite this article:   
Ziyao FAN,Tianwen WU,Kui WU, et al. Reflections on the system of evaluation of gene-edited livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 211-217.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2019303
https://academic.hep.com.cn/fase/EN/Y2020/V7/I2/211
Fig.1  Schematic diagram of the relationship between development of livestock breeding methods and livestock phenotypes. The area between the dotted lines in the spider web diagram is the range in which individual livestock can survive.
Fig.2  Schematic diagram of gene-edited livestock classification. (a–g) GE1–GE7.
1 F Costantini, E Lacy. Introduction of a rabbit β-globin gene into the mouse germ line. Nature, 1981, 294(5836): 92–94
https://doi.org/10.1038/294092a0 pmid: 6945481
2 R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0 pmid: 3892305
3 E A Maga, R Geoffrey Sargent, H Zeng, S Pati, D A Zarling, S M Oppenheim, N M B Collette, A L Moyer, J S Conrad-Brink, J D Rowe, R H BonDurant, G B Anderson, J D Murray. Increased efficiency of transgenic livestock production. Transgenic Research, 2003, 12(4): 485–496
https://doi.org/10.1023/A:1024257906647 pmid: 12885169
4 D F Carlson, W Tan, S G Lillico, D Stverakova, C Proudfoot, M Christian, D F Voytas, C R Long, C B Whitelaw, S C Fahrenkrug. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
https://doi.org/10.1073/pnas.1211446109 pmid: 23027955
5 M Bibikova, K Beumer, J K Trautman, D Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764
https://doi.org/10.1126/science.1079512 pmid: 12730594
6 J C Miller, M C Holmes, J Wang, D Y Guschin, Y L Lee, I Rupniewski, C M Beausejour, A J Waite, N S Wang, K A Kim, P D Gregory, C O Pabo, E J Rebar. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25(7): 778–785
https://doi.org/10.1038/nbt1319 pmid: 17603475
7 A J Wood, T W Lo, B Zeitler, C S Pickle, E J Ralston, A H Lee, R Amora, J C Miller, E Leung, X Meng, L Zhang, E J Rebar, P D Gregory, F D Urnov, B J Meyer. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307
https://doi.org/10.1126/science.1207773 pmid: 21700836
8 M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829 pmid: 22745249
9 L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143 pmid: 23287718
10 J C Miller, S Tan, G Qiao, K A Barlow, J Wang, D F Xia, X Meng, D E Paschon, E Leung, S J Hinkley, G P Dulay, K L Hua, I Ankoudinova, G J Cost, F D Urnov, H S Zhang, M C Holmes, L Zhang, P D Gregory, E J Rebar. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143–148
https://doi.org/10.1038/nbt.1755 pmid: 21179091
11 P Rouet, F Smih, M Jasin. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
https://doi.org/10.1073/pnas.91.13.6064 pmid: 8016116
12 J J Whyte, J Zhao, K D Wells, M S Samuel, K M Whitworth, E M Walters, M H Laughlin, R S Prather. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78(1): 2
https://doi.org/10.1002/mrd.21271 pmid: 21268178
13 L Qian, M Tang, J Yang, Q Wang, C Cai, S Jiang, H Li, K Jiang, P Gao, D Ma, Y Chen, X An, K Li, W Cui. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 2015, 5(1): 14435
https://doi.org/10.1038/srep14435 pmid: 26400270
14 B Yu, R Lu, Y Yuan, T Zhang, S Song, Z Qi, B Shao, M Zhu, F Mi, Y Cheng. Efficient TALEN-mediated myostatin gene editing in goats. BMC Developmental Biology, 2016, 16(1): 26
https://doi.org/10.1186/s12861-016-0126-9 pmid: 27461387
15 X Wang, B Cai, J Zhou, H Zhu, Y Niu, B Ma, H Yu, A Lei, H Yan, Q Shen, L Shi, X Zhao, J Hua, X Huang, L Qu, Y Chen. Correction: disruption of FGF5 in Cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One, 2016, 11(11): e0167322
https://doi.org/10.1371/journal.pone.0167322 pmid: 27875586
16 C Burkard, S G Lillico, E Reid, B Jackson, A J Mileham, T Ait-Ali, C B A Whitelaw, A L Archibald. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 2017, 13(2): e1006206
https://doi.org/10.1371/journal.ppat.1006206 pmid: 28231264
17 P T Gandhi, T N Athmaram, G R Arunkumar. Novel nicotine analogues with potential anti-mycobacterial activity. Bioorganic & Medicinal Chemistry, 2016, 24(8): 1637–1647
https://doi.org/10.1016/j.bmc.2016.02.035 pmid: 26951892
18 H Wu, Y Wang, Y Zhang, M Yang, J Lv, J Liu, Y Zhang. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
https://doi.org/10.1073/pnas.1421587112 pmid: 25733846
19 S Yu, J Luo, Z Song, F Ding, Y Dai, N Li. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
https://doi.org/10.1038/cr.2011.153 pmid: 21912434
20 J Zhang, M L Cui, Y W Nie, B Dai, F R Li, D J Liu, H Liang, M Cang. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
https://doi.org/10.1111/febs.14520 pmid: 29802684
21 D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560 pmid: 27153274
22 M Li, H Ouyang, H Yuan, J Li, Z Xie, K Wang, T Yu, M Liu, X Chen, X Tang, H Jiao, D Pang. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. Genetics, 2018, 8(5): 1747–1754
https://doi.org/10.1534/g3.118.200114 pmid: 29563188
23 L C Garas, J D Murray, E A Maga. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
https://doi.org/10.1146/annurev-animal-022114-110739 pmid: 25387117
24 X H Zhang, L Y Tee, X G Wang, Q S Huang, S H Yang. Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy. Nucleic Acids, 2015, 4: e264
https://doi.org/10.1038/mtna.2015.37 pmid: 26575098
25 Y Fu, J D Sander, D Reyon, V M Cascio, J K Joung. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284
https://doi.org/10.1038/nbt.2808 pmid: 24463574
26 J H Zhang, P Adikaram, M Pandey, A Genis, W F Simonds. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7(3): 166–174
https://doi.org/10.1080/21655979.2016.1189039 pmid: 27340770
27 V Pattanayak, S Lin, J P Guilinger, E Ma, J A Doudna, D R Liu. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9): 839–843
https://doi.org/10.1038/nbt.2673 pmid: 23934178
28 Y Fu, J A Foden, C Khayter, M L Maeder, D Reyon, J K Joung, J D Sander. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826
https://doi.org/10.1038/nbt.2623 pmid: 23792628
29 S W Cho, S Kim, Y Kim, J Kweon, H S Kim, S Bae, J S Kim. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24(1): 132–141
https://doi.org/10.1101/gr.162339.113 pmid: 24253446
30 A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4 pmid: 31634902
31 E A Maga, J D Murray. Welfare applications of genetically engineered animals for use in agriculture. Journal of Animal Science, 2010, 88(4): 1588–1591
https://doi.org/10.2527/jas.2010-2828 pmid: 20154173
32 N Duensing, T Sprink, W A Parrott, M Fedorova, M A Lema, J D Wolt, D Bartsch. Novel features and considerations for ERA and regulation of crops produced by genome editing. Frontiers in Bioengineering and Biotechnology, 2018, 6: 79
https://doi.org/10.3389/fbioe.2018.00079 pmid: 29967764
33 A L Norris, S S Lee, K J Greenlees, D A Tadesse, M F Miller, H A Lombardi. Template plasmid integration in germline genome-edited cattle. Nature Biotechnology, 2020, 38(2): 163–164
https://doi.org/10.1038/s41587-019-0394-6 pmid: 32034391
[1] Huihui WEI, Wenjuan ZHANG, Feng ZHANG, Guojun SUN. Ecological security evaluation of Africa[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 467-477.
[2] Fang-Jie ZHAO. Strategies to manage the risk of heavy metal(loid) contamination in agricultural soils[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 333-338.
[3] Jan Pieter VAN DER BERG, Gijs A. KLETER, Evy BATTAGLIA, Martien A. M. GROENEN, Esther J. KOK. Developments in genetic modification of cattle and implications for regulation, safety and traceability[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 136-147.
[4] Zachariah MCLEAN, Björn OBACK, Götz LAIBLE. Embryo-mediated genome editing for accelerated genetic improvement of livestock[J]. Front. Agr. Sci. Eng. , 2020, 7(2): 148-160.
[5] David R. CHADWICK, John R. WILLIAMS, Yuelai LU, Lin MA, Zhaohai BAI, Yong HOU, Xinping CHEN, Thomas H. MISSELBROOK. Strategies to reduce nutrient pollution from manure management in China[J]. Front. Agr. Sci. Eng. , 2020, 7(1): 45-55.
[6] Jing TENG, Xiaoqian HU, Ningping TAO, Mingfu WANG. Impact and inhibitory mechanism of phenolic compounds on the formation of toxic Maillard reaction products in food[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 321-329.
[7] Joseph J. JEN. Global challenges of food safety for China[J]. Front. Agr. Sci. Eng. , 2018, 5(3): 291-293.
[8] Dawn M. BROWNING, Sheri SPIEGAL, Richard E. ESTELL, Andres F. CIBILS, Raul H. PEINETTI. Integrating space and time: a case for phenological context in grazing studies and management[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 44-56.
[9] Xinquan ZHAO, Liang ZHAO, Qi LI, Huai CHEN, Huakun ZHOU, Shixiao XU, Quanmin DONG, Gaolin WU, Yixin HE. Using balance of seasonal herbage supply and demand to inform sustainable grassland management on the Qinghai–Tibetan Plateau[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 1-8.
[10] Xuexue LIU, Yuehui MA, Lin JIANG. Genomic regions under selection for important traits in domestic horse breeds[J]. Front. Agr. Sci. Eng. , 2017, 4(3): 289-294.
[11] Kaye BASFORD,Richard BENNETT,Joanne DALY,Mary Ann AUGUSTIN,Snow BARLOW,Tony GREGSON,Alice LEE,Deli CHEN,Matt WENHAM. Delivering food safety[J]. Front. Agr. Sci. Eng. , 2017, 4(1): 1-4.
[12] Yueyi CHEN,Xinsheng GAO,Xiaofei ZHANG,Weimin TIAN. Relationship between the number of tapping-induced secondary laticifer lines and rubber yield among Hevea germplasm[J]. Front. Agr. Sci. Eng. , 2016, 3(4): 363-367.
[13] Weichao ZHENG,Li NI,Baoming LI. Electrolyzed water and its application in animal houses[J]. Front. Agr. Sci. Eng. , 2016, 3(3): 195-205.
[14] Xiaoming HU,Jing GUO,Chunling BAI,Zhuying WEI,Li GAO,Tingmao HU,Shorgan BOU,Guangpeng LI. Matrix attachment regions included in a bicistronic vector enhances and stabilizes follistatin gene expressions in both transgenic cells and transgenic mice[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 87-96.
[15] Shaohua WANG,Kun ZHANG,Yunping DAI. Advances in genetic engineering of domestic animals[J]. Front. Agr. Sci. Eng. , 2016, 3(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed