|
|
Reflections on the system of evaluation of gene-edited livestock |
Ziyao FAN, Tianwen WU, Kui WU, Yulian MU, Kui LI( ) |
State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China |
|
|
Abstract The rapid development of biotechnology has provided a greater understanding of the biological functions of major candidate genes that have important functions regarding economic traits, and new materials for livestock breeding have been obtained through gene editing (GE) and embryo manipulation with the purpose of improving quality and output and reducing the costs and risk of disease. Public concerns, particularly over safety risks and production performance, must be addressed. Evaluation is the most important component of the regulation of gene-edited livestock and is a crucial guarantee of public safety before the marketing of gene-edited animal products. Here, the system of evaluation of gene-edited livestock is discussed in terms of public safety and production performance. The search for safe and ethical applications in the GE of livestock, a case-by-case evaluation strategy, and classification and simplification are used in order to promote a more efficient, objective, comprehensive and operable evaluation system.
|
Keywords
evaluation
gene editing
livestock
performance
safety
|
Corresponding Author(s):
Kui LI
|
Just Accepted Date: 19 February 2020
Online First Date: 12 March 2020
Issue Date: 28 April 2020
|
|
1 |
F Costantini, E Lacy. Introduction of a rabbit β-globin gene into the mouse germ line. Nature, 1981, 294(5836): 92–94
https://doi.org/10.1038/294092a0
pmid: 6945481
|
2 |
R E Hammer, V G Pursel, C E Rexroad Jr, R J Wall, D J Bolt, K M Ebert, R D Palmiter, R L Brinster. Production of transgenic rabbits, sheep and pigs by microinjection. Nature, 1985, 315(6021): 680–683
https://doi.org/10.1038/315680a0
pmid: 3892305
|
3 |
E A Maga, R Geoffrey Sargent, H Zeng, S Pati, D A Zarling, S M Oppenheim, N M B Collette, A L Moyer, J S Conrad-Brink, J D Rowe, R H BonDurant, G B Anderson, J D Murray. Increased efficiency of transgenic livestock production. Transgenic Research, 2003, 12(4): 485–496
https://doi.org/10.1023/A:1024257906647
pmid: 12885169
|
4 |
D F Carlson, W Tan, S G Lillico, D Stverakova, C Proudfoot, M Christian, D F Voytas, C R Long, C B Whitelaw, S C Fahrenkrug. Efficient TALEN-mediated gene knockout in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17382–17387
https://doi.org/10.1073/pnas.1211446109
pmid: 23027955
|
5 |
M Bibikova, K Beumer, J K Trautman, D Carroll. Enhancing gene targeting with designed zinc finger nucleases. Science, 2003, 300(5620): 764
https://doi.org/10.1126/science.1079512
pmid: 12730594
|
6 |
J C Miller, M C Holmes, J Wang, D Y Guschin, Y L Lee, I Rupniewski, C M Beausejour, A J Waite, N S Wang, K A Kim, P D Gregory, C O Pabo, E J Rebar. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotechnology, 2007, 25(7): 778–785
https://doi.org/10.1038/nbt1319
pmid: 17603475
|
7 |
A J Wood, T W Lo, B Zeitler, C S Pickle, E J Ralston, A H Lee, R Amora, J C Miller, E Leung, X Meng, L Zhang, E J Rebar, P D Gregory, F D Urnov, B J Meyer. Targeted genome editing across species using ZFNs and TALENs. Science, 2011, 333(6040): 307
https://doi.org/10.1126/science.1207773
pmid: 21700836
|
8 |
M Jinek, K Chylinski, I Fonfara, M Hauer, J A Doudna, E Charpentier. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
https://doi.org/10.1126/science.1225829
pmid: 22745249
|
9 |
L Cong, F A Ran, D Cox, S Lin, R Barretto, N Habib, P D Hsu, X Wu, W Jiang, L A Marraffini, F Zhang. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
https://doi.org/10.1126/science.1231143
pmid: 23287718
|
10 |
J C Miller, S Tan, G Qiao, K A Barlow, J Wang, D F Xia, X Meng, D E Paschon, E Leung, S J Hinkley, G P Dulay, K L Hua, I Ankoudinova, G J Cost, F D Urnov, H S Zhang, M C Holmes, L Zhang, P D Gregory, E J Rebar. A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 2011, 29(2): 143–148
https://doi.org/10.1038/nbt.1755
pmid: 21179091
|
11 |
P Rouet, F Smih, M Jasin. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 6064–6068
https://doi.org/10.1073/pnas.91.13.6064
pmid: 8016116
|
12 |
J J Whyte, J Zhao, K D Wells, M S Samuel, K M Whitworth, E M Walters, M H Laughlin, R S Prather. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Molecular Reproduction and Development, 2011, 78(1): 2
https://doi.org/10.1002/mrd.21271
pmid: 21268178
|
13 |
L Qian, M Tang, J Yang, Q Wang, C Cai, S Jiang, H Li, K Jiang, P Gao, D Ma, Y Chen, X An, K Li, W Cui. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 2015, 5(1): 14435
https://doi.org/10.1038/srep14435
pmid: 26400270
|
14 |
B Yu, R Lu, Y Yuan, T Zhang, S Song, Z Qi, B Shao, M Zhu, F Mi, Y Cheng. Efficient TALEN-mediated myostatin gene editing in goats. BMC Developmental Biology, 2016, 16(1): 26
https://doi.org/10.1186/s12861-016-0126-9
pmid: 27461387
|
15 |
X Wang, B Cai, J Zhou, H Zhu, Y Niu, B Ma, H Yu, A Lei, H Yan, Q Shen, L Shi, X Zhao, J Hua, X Huang, L Qu, Y Chen. Correction: disruption of FGF5 in Cashmere goats using CRISPR/Cas9 results in more secondary hair follicles and longer fibers. PLoS One, 2016, 11(11): e0167322
https://doi.org/10.1371/journal.pone.0167322
pmid: 27875586
|
16 |
C Burkard, S G Lillico, E Reid, B Jackson, A J Mileham, T Ait-Ali, C B A Whitelaw, A L Archibald. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathogens, 2017, 13(2): e1006206
https://doi.org/10.1371/journal.ppat.1006206
pmid: 28231264
|
17 |
P T Gandhi, T N Athmaram, G R Arunkumar. Novel nicotine analogues with potential anti-mycobacterial activity. Bioorganic & Medicinal Chemistry, 2016, 24(8): 1637–1647
https://doi.org/10.1016/j.bmc.2016.02.035
pmid: 26951892
|
18 |
H Wu, Y Wang, Y Zhang, M Yang, J Lv, J Liu, Y Zhang. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13): E1530–E1539
https://doi.org/10.1073/pnas.1421587112
pmid: 25733846
|
19 |
S Yu, J Luo, Z Song, F Ding, Y Dai, N Li. Highly efficient modification of β-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Research, 2011, 21(11): 1638–1640
https://doi.org/10.1038/cr.2011.153
pmid: 21912434
|
20 |
J Zhang, M L Cui, Y W Nie, B Dai, F R Li, D J Liu, H Liang, M Cang. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS Journal, 2018, 285(15): 2828–2839
https://doi.org/10.1111/febs.14520
pmid: 29802684
|
21 |
D F Carlson, C A Lancto, B Zang, E S Kim, M Walton, D Oldeschulte, C Seabury, T S Sonstegard, S C Fahrenkrug. Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 2016, 34(5): 479–481
https://doi.org/10.1038/nbt.3560
pmid: 27153274
|
22 |
M Li, H Ouyang, H Yuan, J Li, Z Xie, K Wang, T Yu, M Liu, X Chen, X Tang, H Jiao, D Pang. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs. Genetics, 2018, 8(5): 1747–1754
https://doi.org/10.1534/g3.118.200114
pmid: 29563188
|
23 |
L C Garas, J D Murray, E A Maga. Genetically engineered livestock: ethical use for food and medical models. Annual Review of Animal Biosciences, 2015, 3(1): 559–575
https://doi.org/10.1146/annurev-animal-022114-110739
pmid: 25387117
|
24 |
X H Zhang, L Y Tee, X G Wang, Q S Huang, S H Yang. Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy. Nucleic Acids, 2015, 4: e264
https://doi.org/10.1038/mtna.2015.37
pmid: 26575098
|
25 |
Y Fu, J D Sander, D Reyon, V M Cascio, J K Joung. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284
https://doi.org/10.1038/nbt.2808
pmid: 24463574
|
26 |
J H Zhang, P Adikaram, M Pandey, A Genis, W F Simonds. Optimization of genome editing through CRISPR-Cas9 engineering. Bioengineered, 2016, 7(3): 166–174
https://doi.org/10.1080/21655979.2016.1189039
pmid: 27340770
|
27 |
V Pattanayak, S Lin, J P Guilinger, E Ma, J A Doudna, D R Liu. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 2013, 31(9): 839–843
https://doi.org/10.1038/nbt.2673
pmid: 23934178
|
28 |
Y Fu, J A Foden, C Khayter, M L Maeder, D Reyon, J K Joung, J D Sander. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826
https://doi.org/10.1038/nbt.2623
pmid: 23792628
|
29 |
S W Cho, S Kim, Y Kim, J Kweon, H S Kim, S Bae, J S Kim. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Research, 2014, 24(1): 132–141
https://doi.org/10.1101/gr.162339.113
pmid: 24253446
|
30 |
A V Anzalone, P B Randolph, J R Davis, A A Sousa, L W Koblan, J M Levy, P J Chen, C Wilson, G A Newby, A Raguram, D R Liu. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576(7785): 149–157
https://doi.org/10.1038/s41586-019-1711-4
pmid: 31634902
|
31 |
E A Maga, J D Murray. Welfare applications of genetically engineered animals for use in agriculture. Journal of Animal Science, 2010, 88(4): 1588–1591
https://doi.org/10.2527/jas.2010-2828
pmid: 20154173
|
32 |
N Duensing, T Sprink, W A Parrott, M Fedorova, M A Lema, J D Wolt, D Bartsch. Novel features and considerations for ERA and regulation of crops produced by genome editing. Frontiers in Bioengineering and Biotechnology, 2018, 6: 79
https://doi.org/10.3389/fbioe.2018.00079
pmid: 29967764
|
33 |
A L Norris, S S Lee, K J Greenlees, D A Tadesse, M F Miller, H A Lombardi. Template plasmid integration in germline genome-edited cattle. Nature Biotechnology, 2020, 38(2): 163–164
https://doi.org/10.1038/s41587-019-0394-6
pmid: 32034391
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|