Please wait a minute...
Frontiers of Agricultural Science and Engineering

ISSN 2095-7505

ISSN 2095-977X(Online)

CN 10-1204/S

Postal Subscription Code 80-906

Front. Agr. Sci. Eng.    2021, Vol. 8 Issue (2) : 335-352    https://doi.org/10.15302/J-FASE-2021391
REVIEW
COMPARISON OF POMELO (CITRUS MAXIMA) GROWN IN CHINA AND THAILAND
Warangkana MAKKUMRAI1,2, Yue HUANG1, Qiang XU1()
1. Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
2. Horticultural Research Institute, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand.
 Download: PDF(3002 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• China is the largest producer of pomelo globally.

• Chinese pomelos are adapted to subtropical climates and Thai pomelos to tropical climates.

• Guanxi pomelo is a popular cultivar in China and Thong Dee is the most popular in Thailand.

• Naringin is the most abundant flavonoid in Chinese and Thai pomelos.

• Fruity, sweet, sour, juicy and overall flavor attributes are important in consumer preference.

Pomelo is a member of the genus Citrus that is a key contributor to the breeding of modern citrus cultivars. China is the largest producer of pomelo and one of the top five pomelo exporting countries. Pomelos from Thailand are also well-known for their excellent quality and flavor and are ranked in the top ten export countries. This review introduces pomelo planting locations and conditions in China and Thailand. The characteristics and qualities of some commercial pomelo cultivars in China and Thailand are summarized to introduce them to international consumers and to document their similarities and dissimilarities. Data on bioactive compounds and antioxidant capacity are also included for most Chinese and Thai pomelos to highlight how they differ in this aspect because consumers are increasingly interested in healthier foods. In addition, the sensory perception in terms of aroma, flavor, texture and taste attributes and consumer perspective and preferences are discussed.

Keywords climate      commercial cultivars      fruit characteristics      lycopene      naringin      sensory evaluation     
Corresponding Author(s): Qiang XU   
Just Accepted Date: 26 March 2021   Online First Date: 30 April 2021    Issue Date: 13 July 2021
 Cite this article:   
Warangkana MAKKUMRAI,Yue HUANG,Qiang XU. COMPARISON OF POMELO (CITRUS MAXIMA) GROWN IN CHINA AND THAILAND[J]. Front. Agr. Sci. Eng. , 2021, 8(2): 335-352.
 URL:  
https://academic.hep.com.cn/fase/EN/10.15302/J-FASE-2021391
https://academic.hep.com.cn/fase/EN/Y2021/V8/I2/335
Factor China Thailand
Climatic zone Subtropics Tropics
Annual rainfall 970–1610 mma 1161–2292 mmb
Annual Temperature 17–21°Cc 27–28°Cd
Flowering time February–March 1st time: January–March
2nd time: August–October
Harvesting time October–January 1st time: August–September
2nd time: March–April
Harvesting fruit age 6.0–6.5 month 6.5–8.0 month
Most production provinces
(% production rate)
≥20 Fujian, Guangdong Pichit
10–20 Guangxi Kanchanaburi, Samut-Songkhram
5–10 Sichuan, Hunan Chiang Rai, Nakhon Pathom, Nakhon Nayok, Nakhon Si-Thammarat
1–5 Jiangxi, Zhejiang, Yunnan, Hubei Prachinburi, Chaiyaphum, Chainat
Tab.1  Comparison of factors related to pomelo cultivation in China and Thailand
Fig.1  Chinese commercial pomelo cultivars: (a) Guanxi, (b) red-fleshed Guanxi, (c) Shatian, (d) Anjiang, (e) Shuijing, and (f) Majia.
Fig.2  Thai commercial pomelo cultivars: (a) Thong Dee, (b) Kao Yai, (c) Kao Numphueng, (d) Kao Tangkwa, (e) Tha Khoi, and (f) Tab Tim Siam.
Cultivar Flesh color Lycopene β-Carotene Lutein Zeaxan-
thin
Phytoene Viloaxanthin β-Cryptoxan-
thin
Unit Reference
Chinese pomelo
Chuhong Red ~ 450 ~ 50 ~ 50 ~ 1 µg·g−1 (DW) [44]
Feicui Pale green ~ 1 µg·g−1 (DW) [44]
Guanxi White ~ 1 µg·g−1 (FW) [42]
~ 10 ~ 2 µg·g−1 (FW) [43]
Hongrou/Red-fleshed Sweet Red 5.83±0.44 1.54±0.10 µg·g−1 (FW) [42]
~ 240 ~ 40 µg·g−1 (FW) [43]
55.5±1.13 41.1±2.24 µg·g−1 (DW) [45]
5.26±0.17 2.19±0.14 µg·g−1 (DW) [46]
41.1±2.24 72.2±17.1 trace µg·g−1 (juice) [15]
Fengdu/
Shanyuan
Red 92.2±1.94 27.3±0.68 µg·g−1 (DW) [46]
Huangjin Orange ~ 10 ~ 350 µg·g−1 (FW) [43]
219 µg·g−1 (juice) [16]
Yuhuan White 0.011 0.074 0.022 0.074 µg·g−1 (DW) [47]
Chuzhou Early Red Red 16.1 6.32 0.17 1.74 µg·g−1 (DW) [47]
Majia Red ~ 40 µg·g−1 (DW) [27]
Thai pomelo
Tab Tim Siam Red 196 ~ 2.3 ~ 0.1 ~ 6 ~ 0.2 ~ 5 µg·g−1 (FW) [48]
~ 4 ~ 4.5 µg·g−1 (DW) [49]
Thong Dee Pink 2.88±0.87 0.26±0.08 µg·g−1 (FW) [29]
13.8–64.6 2.82–3.51 0.12–0.17 12.2–13.4 nd 0.18–0.37 µg·g−1 (FW) [28]
Kao Namphueng Light yellow 0.067±0.035 0.089±0.024 µg·g−1 (FW) [29]
Manee Esan Red 68.7 22.4 µg·g−1 (FW) [50]
Tab.2  Major carotenoid concentrations in flesh or juice of Chinese and Thai pomelo cultivars
Cultivar Naringin Hesperidin Neohesperidin Unit Reference
Chinese pomelo
Mi 109±0.03 42.2±1.27 6.71±0.97 mg·L−1 (juice) [51]
Siji 126±0.80 21.8±0.36 nd mg·L−1 (juice) [51]
Wentan 2430±123 26.3±3.43 16.5±0.98 µg·g−1 (FW) [52]
Liangping 1160±68 11.4±1.09 16.4±1.87 µg·g−1 (FW) [52]
Liangping No.1 ~ 3000 nd nd µg·g−1 (FW) [53]
Huayingshan 974±56.9 0.80±0.02 1.93±0.05 µg·g−1 (FW) [52]
Hongxin 2390±67 nd 19.8±1.43 µg·g−1 (FW) [52]
Meiweishatian 2310±89 29.9±1.54 24.1±2.37 µg·g−1 (FW) [52]
Gaopu 1360±76 nd 32.4±3.82 µg·g−1 (FW) [52]
Shatian 2150±122 nd 19.3±1.70 µg·g−1 (FW) [52]
164–198 mg·L−1 (juice) [54]
155±13.9 nd nd mg·L−1 (juice) [55]
Gulaoqianshatian ~ 9000 trace nd µg·g−1 (DW) [53]
Wanbai 1280±90 nd 9.43±0.65 µg·g−1 (FW) [52]
Dayongjuhuaxin 3120±55 nd 7.53±0.34 µg·g−1 (FW) [52]
24-14 2180±119 13.5±0.78 14.3±0.77 µg·g−1 (FW) [52]
14-13 1440±46 nd nd µg·g−1 (FW) [52]
Chandler 4010±147 nd 12.7±0.40 µg·g−1 (FW) [52]
Dongfengzao 971±56.3 nd nd µg·g−1 (FW) [52]
Zaoshu 1580±77 nd 30.7±2.65 µg·g−1 (FW) [52]
Zuoshi 1350±98 nd 13.3±0.72 µg·g−1 (FW) [52]
Qi 1100±77 nd 19.5±0.99 µg·g−1 (FW) [52]
Guanxi 892±34.6 nd nd µg·g−1 (FW) [52]
136±11.2 nd nd mg·L−1 (juice) [55]
61–139 mg·L−1 (juice) [54]
~ 7000 nd nd µg·g−1 (DW) [53]
Dianjiangbai ~ 2000 nd nd µg·g−1 (DW) [53]
Menglunzao 2350±122 nd 9.16±0.82 µg·g−1 (FW) [52]
Tongxian 2110±161 nd 21.3±2.55 µg·g−1 (FW) [52]
Libo 1970±66 nd 12.6±1.32 µg·g−1 (FW) [52]
Linnanshatiao 1390±55 nd 38.6±3.61 µg·g−1 (FW) [52]
Sijipao 992±76.6 nd 10.8±0.78 µg·g−1 (FW) [52]
Jintanglv 1280±102 nd 22.8±2.44 µg·g−1 (FW) [52]
Shisheng 2380±133 nd 10.4±0.91 µg·g−1 (FW) [52]
Guanxiang 735±55.8 nd 12.0±1.09 µg·g−1 (FW) [52]
28-19 2370±210 nd 44.7±1.54 µg·g−1 (FW) [52]
Anjiangxiang 3130±128 nd 25.6±0.93 µg·g−1 (FW) [52]
Guokui 1770±24.0 nd 12.4±0.07 µg·g−1 (FW) [52]
Yuhuan 32.6±1.82 nd nd mg·L−1 (juice) [55]
Cuixiangtian 21.8±0.94 nd nd mg·L−1 (juice) [55]
Shuijingmi 988±78.7 553±33.1 nd µg·g−1 (FW) [56]
Thai pomelo
Tab Tim Siam 26310±440 nd 29920±180 µg·g−1 (DW) [57]
768±32.1 µg·g−1 (FW) [58]
2.65±0.06 0.56±0.02 0.09±0.01 mg·L−1 (juice) [41]
Tha Khoi 41290±430 nd 36790±250 µg·g−1 (DW) [57]
500 nd nd µg·g−1 (FW) [59]
4430 µg·g−1 (DW) [60]
381±67.2 2.15±0.11 2.18±0.32 mg·L−1 (juice) [36]
Thong Dee 8130±130 10080±120 10760±30 µg·g−1 (DW) [57]
364±31 µg·g−1 (FW) [58]
254–388 µg·g−1 (FW) [61]
261 nd nd µg·g−1 (FW) [59]
349±54.9 nd nd mg·L−1 (juice) [36]
Kao Namphueng 2340±110 22780±330 14760±150 µg·g−1 (DW) [57]
411±20.9 µg·g−1 (FW) [58]
444 nd nd µg·g−1 (FW) [59]
323±43.6 nd 0.59±0.04 mg·L−1 (juice) [36]
Kao Yai 11900±210 12040±120 25400±120 µg·g−1 (DW) [57]
415±25.0 µg·g−1 (FW) [58]
350–524 nd nd µg·g−1 (FW) [59]
365±82.9 nd nd mg·L−1 (juice) [36]
Kao Tangkwa 40650±390 nd nd µg·g−1 (DW) [57]
392±17.4 µg·g−1 (FW) [58]
201–241 nd nd µg·g−1 (FW) [59]
243±33.6 nd nd mg·L−1 (juice) [36]
Kao Hom 263 µg·g−1 (FW) [59]
Kao Pan 295 nd nd µg·g−1 (FW) [59]
316±34.5 nd nd mg·L−1 (juice) [36]
Pattavee 386±80.2 nd nd mg·L−1 (juice) [36]
Tab.3  Major flavonoid concentrations in flesh or juice of Chinese and Thai pomelo cultivars
Cultivar DPPH FRAP SRSA Reference
Mi 37.7±1.07 (%) 510±4.0 (mg·L−1 AA) [51]
Siji 35.8±0.95 (%) 442±3.3 (mg·L−1 AA) [51]
Wentan 35.8±2.40 (%) 1.20±0.09 (mmol·L−1 FeSO4·7H2O) 31.7±3.43 (% anion) [52]
Liangping 29.3±3.21 (%) 0.97±0.08 (mmol·L−1 FeSO4·7H2O) 33.7±2.89 (% anion) [52]
Liangping No.1 9.39±0.31 (mmol·g−1 TE, DW) 18.6±0.59 (mmol·g−1 TE, DW) [53]
Huayingshan 41.6±4.41 (%) 1.08±0.09 (mmol·L−1 FeSO4·7H2O) 30.6±1.90 (% anion) [52]
Hongxin 48.5±5.23 (%) 1.12±0.15 (mmol·L−1 FeSO4·7H2O) 38.3±3.83 (% anion) [52]
Meiweishatian 42.1±3.60 (%) 1.02±0.11 (mmol·L−1 FeSO4·7H2O) 33.9±1.65 (% anion) [52]
Gaopu 40.1±3.64 (%) 1.07±0.05 (mmol·L−1 FeSO4·7H2O) 37.5±2.55 (% anion) [52]
Shatian 37.2±2.65 (%) 1.00±0.07 (mmol·L−1 FeSO4·7H2O) 25.8±2.87 (% anion) [52]
Gulaoqianshatian 9.12±0.86 (mmol·g−1 TE, DW) 12.6±0.35 (mmol·g−1 TE, DW) [53]
Wanbai 35.6±4.82 (%) 1.20±0.09 (mmol·L−1 FeSO4·7H2O) 33.7±1.87 (% anion) [52]
Dayongjuhuaxin 38.6±3.21 (%) 0.90±0.05 (mmol·L−1 FeSO4·7H2O) 40.3±5.76 (% anion) [52]
24-14 36.4±2.55 (%) 1.10±0.12 (mmol·L−1 FeSO4·7H2O) 36.5±4.24 (% anion) [52]
14-13 41.3±3.54 (%) 1.43±0.17 (mmol·L−1 FeSO4·7H2O) 39.0±2.14 (% anion) [52]
Chandler 46.0±4.67 (%) 1.30±0.07 (mmol·L−1 FeSO4·7H2O) 43.4±3.80 (% anion) [52]
Dongfengzao 43.2±5.12 (%) 1.24±0.10 (mmol·L−1 FeSO4·7H2O) 42.9±4.34 (% anion) [52]
Zaoshu 40.2±3.21 (%) 1.28±0.04 (mmol·L−1 FeSO4·7H2O) 35.7±2.63 (% anion) [52]
Zuoshi 42.6±4.65 (%) 1.22±0.07 (mmol·L−1 FeSO4·7H2O) 42.4±3.77 (% anion) [52]
Qi 48.5±5.41 (%) 1.43±0.13 (mmol·L−1 FeSO4·7H2O) 44.8±3.81 (% anion) [52]
Guanxi 47.3±4.90 (%) 1.10±0.10 (mmol·L−1 FeSO4·7H2O) 42.9±2.90 (% anion) [52]
8.25±0.17 (mmol·g−1 TE, DW) 14.6±0.69 (mmol·g−1 TE, DW) [53]
Menglunzao 40.2±3.76 (%) 1.02±0.09 (mmol·L−1 FeSO4·7H2O) 38.6±1.54 (% anion) [52]
Tongxian 35.4±2.63 (%) 0.97±0.08 (mmol·L−1 FeSO4·7H2O) 39.7±3.66 (% anion) [52]
Libo 45.4±4.43 (%) 0.90±0.07 (mmol·L−1 FeSO4·7H2O) 41.4±5.89 (% anion) [52]
Linnanshatiao 42.1±2.87 (%) 1.50±0.14 (mmol·L−1 FeSO4·7H2O) 39.6±3.73 (% anion) [52]
Sijipao 36.8±1.76 (%) 0.93±0.06 (mmol·L−1 FeSO4·7H2O) 40.8±3.71 (% anion) [52]
Jintanglv 49.3±5.76 (%) 1.55±0.14 (mmol·L−1 FeSO4·7H2O) 39.7±2.75 (% anion) [52]
Shisheng 39.1±2.65 (%) 1.02±0.06 (mmol·L−1 FeSO4·7H2O) 33.8±1.99 (% anion) [52]
Guanxiang 41.7±3.23 (%) 1.30±0.04 (mmol·L−1 FeSO4·7H2O) 44.1±4.37 (% anion) [52]
28-19 50.9±4.77 (%) 1.56±0.19 (mmol·L−1 FeSO4·7H2O) 40.2±3.77 (% anion) [52]
Anjiangxiang 32.2±2.55 (%) 1.21±0.09 (mmol·L−1 FeSO4·7H2O) 38.2±3.79 (% anion) [52]
Guokui 41.2±2.89 (%) 1.10±0.04 (mmol·L−1 FeSO4·7H2O) 35.6±2.83 (% anion) [52]
Shuijingmi 7.93±0.30 (%) 12.5±1.15 (mmol·g−1 TE, DW) [56]
Dianjiangbai 10.7±0.35 (mmol·g−1 TE, DW) 18.0±1.28 (mmol·g−1 TE, DW) [53]
Majia ~ 95 (%) ~ 0.52 (Abs. at 700 nm) [27]
Tab Tim Siam 8.64±0.79 (mg·g−1 AA, DW) 66.5±1.25 (mg·g−1 AA, DW) 0.61±0.06 (g·g−1 TE, DW) [57]
~ 60 (%) [49]
Tha Khoi 0.41±0.27 (mg·g−1 AA, DW) 68.0±1.06 (mg·g−1 AA, DW) 0.65±0.09 (g·g−1 TE, DW) [57]
8.34±0.05 (%) 37.0±1.31 (mg·g−1 TE, DW) [60]
25.6±1.04 (%) 351±18.6 (mg·L−1 AA) [36]
547±66.4 (mg·L−1 TE)
Thong Dee 11.0±0.99 (mg·g−1 AA, DW) 60.9±0.43 (mg·g−1 AA, DW) 0.72±0.03 (g·g−1 TE, DW) [57]
25.0±2.89 (%) 303±8.8 (mg·L−1 AA) [36]
440±13.8 (mg·L−1 TE)
0.411–0.643 (mg·g−1 TE, FW) 0.369–0.491 (mg·g−1 AA, FW) [61]
Kao Namphueng 1.45±0.49 (mg·g−1 AA, DW) 109±1.25 (mg·g−1 AA, DW) 0.62±0.06 (g·g−1 TE, DW) [57]
22.2±0.71 (%) 193±14.1 (mg·L−1 AA) [36]
284±22.1 (mg·L−1 TE)
Kao Yai 13.8±0.66 (mg·g−1 AA, DW) 78.1±0.26 (mg·g−1 AA, DW) 0.48±0.06 (g·g−1 TE, DW) [57]
17.0±0.74 (%) 214±6.3 (mg·L−1 AA) [36]
317±9.9 (mg·L−1 TE)
Kao Tangkwa 6.34±0.63 (mg·g−1 AA, DW) 69.6±0.10 (mg·g−1 AA, DW) 0.80±0.14 (g·g−1 TE, DW) [57]
16.7±0.89 (%) 204±10.2 (mg·L−1 AA) [36]
302±16.0 (mg·L−1 TE)
Kao Pan 10.8±1.00 (%) 124±2.6 (mg·L−1 AA) [36]
177±4.0 (mg·L−1 TE)
Pattavee 18.4±2.07 (%) 235±6.2 (mg·L−1 AA) [36]
351±9.7 (mg·L−1 TE)
Tab.4  Antioxidant capacity of the flesh in Chinese and Thai pomelo cultivars
Cultivar Sensory description Reference
Chinese pomelo
Guanxi High hexanal (key aroma) (grass, tallow and fat aroma)
E-2-octenal (green, nut, and fat aroma)
E-2-nonenal (orris and cucumber aroma)
High pentanol (OAV<1)
Hexanol (green aroma)
Butyl butanoate (fruity aroma)
High cis-linalool oxide (flower aroma)
High β-myrcene (balsamic, must, and spice aroma)
High limonene (citrus and mint aroma)
Linolool (flower and lavender aroma)
[17]
Shatian High hexanal (key aroma) (grass, tallow and fat aroma)
Hexanol (green aroma)
High ethyl acetate (pineapple aroma)
High limonene (citrus and mint aroma)
Linolool (flower and lavender aroma)
[17]
Honey Pink Limonene
Very high cis-3-hexanol
Very high hexanol
Octanol
Acetaldehyde
High Hexanal
[80]
Honey White Limonene
High cis-3-hexanol
High hexanol
Octanol
Acetaldehyde
Hexanal
[80]
Huangjin High D-limonene
High hexanal (key aroma)
Highest aroma intensity
High astringency, bitterness, and richness
Third most satisfying taste
[78]
Sanhong High D-limonene
High hexanal (key aroma)
High astringency
Second most satisfying taste
[78]
Dongshizou Lower D-limonene
High camphene (key aroma)
High sourness, aftertaste-A, sweetness, umami, and saltiness
First most satisfy taste
[78]
Thai pomelo
Thong Dee Very high limonene
Cis-3-hexanol
Hexanol
α-terpineol
Nootkatone
Hexanal
Trace of acetaldehyde
High glossiness
High citrus, pomelo, floral, and overall sweet aroma and flavor
High viny, orange peel, and overall sour aroma
High overall sour flavor
High moisture release
Low hardness and firmness
[80]






[79]
Tab Tim Siam High floral and overall sweet aroma and flavor
High viny flavor
High orange peel flavor and aftertaste
High chewiness and fibrous
High bitter taste and bitter aftertaste
High astringent and particles
Low pomelo aroma and flavor
Low overall sour flavor
Low sour taste
[79]
KaoYai High limonene
High acetaldehyde
No hexanal
No alcohols
High viny and over all sour flavor
High hardness and firmness
Low sweet taste and sweet aftertaste
[80]



[79]
Kao Numphueng High sweet taste
Low orange peel flavor and aftertaste
Low bitter taste
Low astringent and particles
[79]
Kao Tangkwa High over all sour flavor
Low viny flavor
Low chewiness
Low bitter taste
[79]
Tab.5  Sensory descriptions of Chinese and Thai pomelo cultivars
1 United States Department of Agriculture (USDA). Citrus: world markets and trade. USDA, 2020
2 F W Martin, W C Cooper. Cultivation of neglected tropical fruits with promise. Part 3: the pummelo. Agricultural Research Service, US Department of Agriculture,1977
3 Trade Map (TM), List of exporters for the selected product: 080540 Fresh or dried grapefruit. 2020. Available at TM website on November 11, 2020
4 United States Department of Agriculture (USDA). Citrus: world markets and trade. USDA, 2017
5 J F Morton. Pummelo. In: Morton J F, ed. Fruits of warm climates. Maimi, Florida: Creative Resource Systems, Inc., 1987, 147–151 ISBN: 0-9610184-1-0
6 Global Agricultural Information Network (GAIN). Citrus annual: China’s citrus production expected to Fall. USA: GAIN, 2016
7 Global Agricultural Information Network (GAIN). Citrus annual: citrus area in China continues to expand. USA: GAIN, 2018
8 Climate-data (CD). Climate Thailand: Weather by month for Thailand. Available at CD website on April 23, 2020
9 Information Technology & Communication center-Department of Agricultural Extension (ITC-DOAE). Pummelo: cultivation in 2018. ITC-DOAE, 2019. Available at ITC-DOAE website on May 10, 2020 (in Thai)
10 L J Li, P Hong, F Chen, H Sun, Y F Yang, X Yu, G L Huang, L M Wu, H Ni. Characterization of the aldehydes and their transformations induced by uv irradiation and air exposure of white guanxi honey pummelo (Citrus grandis (L.) Osbeck) essential oil. Journal of Agricultural and Food Chemistry, 2016, 64(24): 5000–5010
https://doi.org/10.1021/acs.jafc.6b01369 pmid: 27226192
11 Y Wang, X K Fu, W He, Q Chen, J Y Ma, X R Wang. Effect of bagging on fruit quality of three pummelo (Citrus grandis Osbeck) cultivars. In: IOP Conference Series. Earth and Environmental Science, 2019, 330(3): 032051
12 China Intellectual Property Information Network (CIPIN). Guanxi pomelo. China Intellectual Property News, 2018. Available at CIPIN website on May 10, 2020
13 Taste atlas (TA). Guanxi Mi You. Available at TA website on May 18, 2020
14 Y Wang, W He, X Fu, Q Chen, X Wang. Effect of on-tree storage on fruit quality of three pummelo (Citrus grandis Osbeck) cultivars.In: IOP Conference Series. Earth and Environmental Science, 2019, 330(3): 032052
https://doi.org/10.1088/1755-1315/330/3/032052
15 X Z Huang, X M Lu, X K Lu, X M Chen, H Q Lin, J S Lin, S H Cai. Hongroumiyou, a new red fleshed pomelo cultivar. Journal of Fruit Science, 2007, 24(1): 123–124 (in Chinese)
16 X K Lu, Q H Lin, Y J Lin, J T Zhang, S M Zhang, C S Li. ‘Huangjinmiyou’, a new orange-yellow fleshed pomelo cultivar. Journal of Fruit Science, 2013, 30(5): 900–902 (in Chinese)
17 M Zhang, L Li, Z Wu, Y Wang, Y Zang, G Liu. Volatile composition in two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China. Molecules, 2017, 22(5): 716
https://doi.org/10.3390/molecules22050716 pmid: 28468275
18 Z J Li. Effect of bagging on the fruit quality of Shatianyou pummelo cultivar. South China Fruits, 1999, 28(2): 21 (in Chinese)
19 China daily (CD). Shatian pummelo. City of Hechi, Guanxi, 2014. Available at CD website on June 22, 2020
20 J W Chen, Z X Pan, S X Huang, Z W Wang, X Li, D Z Zhang, W H Wu, S J Liu, H X He. Method for controlling fruit cracking of Citrus grandis (L .) Osbeck. CV. Duweiwendan through interstocks. Google Patents, 2016. Available at Google Patents on June 14, 2020
21 Baidu Encycopedia (BE). Duwei Wendan pomelo. Available at BE website on May 27, 2020 (in Chinese)
22 Baidu Encycopedia (BE). Anjiang pummelo. Available at BE website on October 10, 2020 (in Chinese)
23 X Y Zhou, D G Zhou, C H Zhu, J X Li, Z R Wang, Z L Peng, J Q Yue, J Y Gao. Fruit quality of crystal honey pomelo with different tree ages. Journal of Southern Agriculture, 2018, 49(5): 938–943 (in Chinese)
24 L X Cao. The investigation of pummelo germplasms and the origin analysis of Majiayou in Guangfeng, Jiangxi Province. Dissertation for the Master’s Degree. Wuhan: Huazhong Agricultural University, 2012 (in Chinese)
25 J T Yu. Study on the development of famous and special agricultural products in Jiangxi province—above example of Raomajia grapefruit. Dissertation for the Master’s Degree. Nanchang: Nanchang University, 2018 (in Chinese)
26 Z P Nie, Q Huang, C Y Chen, C P Wan, J Y Chen. Chitosan coating alleviates postharvest juice sac granulation by mitigating ROS accumulation in harvested pummelo (Citrus grandis L. Osbeck) during room temperature storage. Postharvest Biology and Technology, 2020, 169: 111309
https://doi.org/10.1016/j.postharvbio.2020.111309
27 Z Nie, C Wan, C Chen, J Chen. Comprehensive evaluation of the postharvest antioxidant capacity of Majiayou pomelo harvested at different maturities based on PCA. Antioxidants, 2019, 8(5): 136
https://doi.org/10.3390/antiox8050136 pmid: 31108913
28 P Buaban, D M Beckles, O Mongkolporn, K Luengwilai. Lycopene accumulation in pummelo (Citrus maxima [Burm.] Merr.) is influenced by growing temperature. International Journal of Fruit Science, 2019, 20(2): 149–163
https://doi.org/10.1080/15538362.2019.1605559
29 R Charoensiri, R Kongkachuichai, S Suknicom, P Sungpuag. Beta-carotene, lycopene, and alpha-tocopherol contents of selected Thai fruits. Food Chemistry, 2009, 113(1): 202–207
https://doi.org/10.1016/j.foodchem.2008.07.074
30 Fresh Partners Thailand (FPT). Fresh Partners—Department of Agriculture Thailand Pomelo pilot project. Available at FPT website on January 28, 2021
31 W Sutthachaidee, B Kuosuwan, B Kiranantawat. Pomelo export logistics process: modern factors of efficiency (the case of wiang kaen district, chiang rai province, Thailand). E3S Web of Conferences, 2020, 164: 03006
32 N Chomchalow, S Somsri, P N Songkhla. Marketing and export of major tropical fruits from Thailand. AU Journal of Technology, 2008, 11(3): 133–143
33 T. Duangthong Pummelo cultivation. Bangkok: Extension and Training Office, Kasetsart University, 1999 (in Thai)
34 V T Kore, S S Tawade, I Chakraborty. Variation in pummelo cultivars: a review. Imperial Journal of Interdisciplinary Research, 2017, 3(1): 1804–1812
35 Kasetloongkim. Varieties and characteristics of pummelo. Available at Kasetloongkim website on April 21, 2020 (in Thai)
36 S Pichaiyongvongdee, R Haruenkit. Investigation of limonoids, flavanones, total polyphenol content and antioxidant activity in seven thai pummelo cultivars. Witthayasan Kasetsat Witthayasat, 2009, 43(3): 458–466
37 U. ParadonnuwatPummelo planting technology for export. Bangkok: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, 2010 (in Thai)
38 K Leelawatana. Comparative studies of physical and chemical characteristics of seven pummelo culitvars (Citrus maxima Merr.). Dissertation for the Master’s Degree. Bangkok: Kasetsart University, 1991 (in Thai)
39 Department of Intelectual Property (DIP). Announcement for geographical indication registration: Tha Khoi pummelo. Bangkok: DIP, 2018 (in Thai)
40 S Kongsri, P Nartvaranant. Fruit morphological characteristics and fruit quality of pomelo cv. Tabtim Siam grown in Nakhon Pathom and Nakhon Si Thammarat Provinces. Journal of Thai Interdisciplinary Research Review, 2019, 14(1): 5–11
41 S Kaewsuksaeng, P Sangwanangkul. Nutritional values and bioactive compound contents in Citrus family locally cultivated in southern Thailand. Bangkok: The Thailand Research Fund, 2012 (in Thai)
42 W N Liu, Q Ye, X Q Jin, F Q Han, X Z Huang, S H Cai, L Yang. A spontaneous bud mutant that causes lycopene and β-carotene accumulation in the juice sacs of the parental Guanxi pummelo fruits (Citrus grandis (L.) Osbeck). Scientia Horticulturae, 2016, 198: 379–384
https://doi.org/10.1016/j.scienta.2015.09.050
43 C C Jiang, Y F Zhang, Y J Lin, Y Chen, X K Lu. Illumina® sequencing reveals candidate genes of carotenoid metabolism in three pummelo cultivars (Citrus maxima) with different pulp color. International Journal of Molecular Sciences, 2019, 20(9): 2246
https://doi.org/10.3390/ijms20092246 pmid: 31067703
44 F Yan, M Shi, Z He, L Wu, X Xu, M He, J Chen, X Deng, Y Cheng, J Xu. Largely different carotenogenesis in two pummelo fruits with different flesh colors. PLoS One, 2018, 13(7): e0200320
https://doi.org/10.1371/journal.pone.0200320 pmid: 29985936
45 X K Lu, Q H Lin, X M Lu, S M Zhang, C S Li, X F Ye. Comparision on carotenoid compositions and contents in different sweet pomelos. Fujian Journal of Agricultural Sciences, 2012, 27(7): 723–727
46 J Xu, N G Tao, Q Liu, X X Deng. Presence of diverse ratios of lycopene/β-carotene in five pink or red-fleshed citrus cultivars. Scientia Horticulturae, 2006, 108(2): 181–184
https://doi.org/10.1016/j.scienta.2006.01.032
47 C J Xu, P D Fraser, W J Wang, P M Bramley. Differences in the carotenoid content of ordinary citrus and lycopene-accumulating mutants. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5474–5481
https://doi.org/10.1021/jf060702t pmid: 16848534
48 N Tatmala, G Ma, L Zhang, M Kato, S Kaewsuksaeng. Characterization of carotenoid accumulation and carotenogenic gene expression during fruit ripening in red colored pulp of ‘Siam Red Ruby’pumelo (Citrus grandis) cultivated in Thailand. Horticulture Journal, 2020, 89(3): 237–243
https://doi.org/10.2503/hortj.UTD-147
49 P Promkaew, V Srilaong, C Wongs-Aree, N Pongprasert, S Kaewsuksaeng, S Kondo. Lycopene synthesis and related gene expression in pummelo pulp increased in shade-grown fruit. Journal of the American Society for Horticultural Science, 2020, 145(1): 60–66
https://doi.org/10.21273/JASHS04814-19
50 N Ianthaisong, R Nampila, S Techawongstien. Lycopene and β-carotene content during growth of’Manee-Esan’pummelo (Citrus grandis (L.) Osbeck) fruit. Acta Horticulturae, 2018, (1208): 443–446
https://doi.org/10.17660/ActaHortic.2018.1208.61
51 G H Xu, D H Liu, J C Chen, X Q Ye, Y Q Ma, J Shi. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 2008, 106(2): 545–551
https://doi.org/10.1016/j.foodchem.2007.06.046
52 W Xi, B Fang, Q Zhao, B Jiao, Z Zhou. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties. Food Chemistry, 2014, 161: 230–238
https://doi.org/10.1016/j.foodchem.2014.04.001 pmid: 24837945
53 Q Chen, D Wang, C Tan, Y Hu, B Sundararajan, Z Zhou. Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants, 2020, 9(2): 196
https://doi.org/10.3390/plants9020196 pmid: 32033423
54 M Zhang, H Nan, Y Wang, X Jiang, Z Li. Comparison of flavonoid compounds in the flavedo and juice of two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China. Molecules, 2014, 19(11): 17314–17328
https://doi.org/10.3390/molecules191117314 pmid: 25353383
55 M X Zhang, C Q Duan, Y Y Zang, Z W Huang, G J Liu. The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chemistry, 2011, 129(4): 1530–1536
https://doi.org/10.1016/j.foodchem.2011.05.136
56 C Zhu, X Zhou, C Long, Y Du, J Li, J Yue, S Pan. Variations of flavonoid composition and antioxidant properties among different cultivars, fruit tissues and developmental stages of citrus fruits. Chemistry & Biodiversity, 2020, 17(6): e1900690
https://doi.org/10.1002/cbdv.201900690 pmid: 32311206
57 K Mäkynen, S Jitsaardkul, P Tachasamran, N Sakai, S Puranachoti, N Nirojsinlapachai, V Chattapat, N Caengprasath, S Ngamukote, S Adisakwattana. Cultivar variations in antioxidant and antihyperlipidemic properties of pomelo pulp (Citrus grandis [L.] Osbeck) in Thailand. Food Chemistry, 2013, 139(1–4): 735–743
https://doi.org/10.1016/j.foodchem.2013.02.017 pmid: 23561168
58 S Chaiwong, T Thepphako̜rn, S Suanphairot, R Chusi, U Khunchan. Evaluation of the active compounds in flavonoids and anthocyanins of Thongdee, Kao Numphueng, Kao Tangkwa, Kao Yai, and Tab Tim Siam pummelo cultivars grown in Thailand. Bangkok: The Thailand Research Fund, 2010 (in Thai)
59 L S Wattanasiritham, K Taweesuk, B Ratanachinakorn. Limonin and naringin in pummelos (Citrus grandis (L.) Osbeck). In Proc. 31st Congress on Science and Technology. Nakhon Ratchasima: Suranaree University of Technology, 2005 (in Thai)
60 W Tonapram. Study of bioactive compounds and antioxidant activities of fruit, fresh-cut and juice Thakhoi pomelo. Dissertation for the Master’s Degree. Phitsanulok: Naresuan University, 2017 (in Thai)
61 S Chaiwong, T Theppakorn. Bioactive compounds and antioxidant capacity of pink pummelo (Citrus grandis (L.) Osbeck) cv “Thong dee” in Thailand. Journal of the International Society for Southeast Asian Agricultural Sciences, 2010, 16(2): 10–16
62 R L Rouseff, S F Martin, C O Youtsey. Quantitative survey of narirutin, naringin, hesperidin, and neohesperidin in citrus. Journal of Agricultural and Food Chemistry, 1987, 35(6): 1027–1030
https://doi.org/10.1021/jf00078a040
63 K Sudto, S Pornpakakul, S Wanichwecharungruang. An efficient method for the large scale isolation of naringin from pomelo (Citrus grandis) peel. International Journal of Food Science & Technology, 2009, 44(9): 1737–1742
https://doi.org/10.1111/j.1365-2621.2009.01989.x
64 A Kumaran, R Joel Karunakaran. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. Lebensmittel-Wissenschaft+Technologie, 2007, 40(2): 344–352
https://doi.org/10.1016/j.lwt.2005.09.011
65 J Contreras-Calderón, L Calderón-Jaimes, E Guerra-Hernández, B García-Villanova. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 2011, 44(7): 2047–2053
https://doi.org/10.1016/j.foodres.2010.11.003
66 Z S Jia, M C Tang, J M Wu. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 1999, 64(4): 555–559
https://doi.org/10.1016/S0308-8146(98)00102-2
67 N Balasundram, K Sundram, S Samman. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 2006, 99(1): 191–203
https://doi.org/10.1016/j.foodchem.2005.07.042
68 D O Kim, S W Jeong, C Y Lee. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 2003, 81(3): 321–326
https://doi.org/10.1016/S0308-8146(02)00423-5
69 E Arena, B Fallico, E Maccarone. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chemistry, 2001, 74(4): 423–427
https://doi.org/10.1016/S0308-8146(01)00125-X
70 P Rapisarda, A Tomaino, R Lo Cascio, F Bonina, A De Pasquale, A Saija. Antioxidant effectiveness as influenced by phenolic content of fresh orange juices. Journal of Agricultural and Food Chemistry, 1999, 47(11): 4718–4723
https://doi.org/10.1021/jf990111l pmid: 10552879
71 R Edge, D J McGarvey, T G Truscott. The carotenoids as anti-oxidants--a review. Journal of Photochemistry and Photobiology, 1997, 41(3): 189–200
https://doi.org/10.1016/S1011-1344(97)00092-4 pmid: 9447718
72 C Dhuique-Mayer, C Caris-Veyrat, P Ollitrault, F Curk, M J Amiot. Varietal and interspecific influence on micronutrient contents in citrus from the Mediterranean area. Journal of Agricultural and Food Chemistry, 2005, 53(6): 2140–2145
https://doi.org/10.1021/jf0402983 pmid: 15769147
73 K M Yoo, K W Lee, J B Park, H J Lee, I K Hwang. Variation in major antioxidants and total antioxidant activity of Yuzu (Citrus junos Sieb ex Tanaka) during maturation and between cultivars. Journal of Agricultural and Food Chemistry, 2004, 52(19): 5907–5913
https://doi.org/10.1021/jf0498158 pmid: 15366841
74 S S Wong. Eu consumers preferences of fresh citrus fruit from different countries: Perception, attitude and willingness to pay. Dissertation for the Master’s Degree. Florida: University of Florida, 2012
75 Institute of Food Technologists. Sensory evaluation guide for testing food and beverage products. Food Technology, 1981, 35(11): 50–59
76 W Makkumrai, G E Anthon, H Sivertsen, S E Ebeler, F Negre-Zakharov, D M Barrett, E J Mitcham. Effect of ethylene and temperature conditioning on sensory attributes and chemical composition of ‘Bartlett’ pears. Postharvest Biology and Technology, 2014, 97: 44–61
https://doi.org/10.1016/j.postharvbio.2014.06.001
77 C A McIntosh, R L Mansell. Three-dimensional distribution of limonin, limonoate A-ring monolactone, and naringin in the fruit tissues of three varieties of Citrus paradisi. Journal of Agricultural and Food Chemistry, 1997, 45(8): 2876–2883
https://doi.org/10.1021/jf970057d
78 C H Zhu, Q Lu, X Y Zhou, J X Li, J Q Yue, Z R Wang, S Y Pan. Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. Lebensmittel-Wissenschaft+Technologie, 2020, 130: 109445
https://doi.org/10.1016/j.lwt.2020.109445
79 C K Rosales, S Suwonsichon. Sensory lexicon of pomelo fruit over various cultivars and fresh-cut storage. Journal of Sensory Studies, 2015, 30(1): 21–32
https://doi.org/10.1111/joss.12133
80 R M Vivian Goh, H Lau, S Q Liu, B Lassabliere, R Guervilly, J Sun, Y Bian, B Yu. Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. Lebensmittel-Wissenschaft+Technologie, 2019, 99: 328–345
https://doi.org/10.1016/j.lwt.2018.09.073
81 M W Cheong, S Q Liu, W Zhou, P Curran, B Yu. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chemistry, 2012, 135(4): 2505–2513
https://doi.org/10.1016/j.foodchem.2012.07.012 pmid: 22980835
82 N Thongthai. Tubtim Siam pomelo, precious and rare, waiting for you to taste. Produce Report: Fresh Fruit, 2018. Available at Producer Report website on January 28, 2021
83 Office of Agricultural Economics (OAE). Export volume and value of 080540000001 pomelo. Thailand: OAE, 2020 (in Thai)
84 Lungporn. Thai pummelo is world-famous ... Chinese people are very like both eating fresh and the new menu “Pummelo spicy salad”, 2016. Available at Kasetkaoklai websie on June 17, 2020 (in Thai)
85 Tridge. Pomelo season in China. Available at Tridge website on June 24, 2020
86 N Chanpanya. Pomelo. Thailand: Department of Agriculture Extension (DOAE), 2020 (in Thai)
87 A Abouzari, N Mahdi Nezhad. The investigation of citrus fruit quality. Popular characteristic and breeding. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2016, 64(3): 725–740
https://doi.org/10.11118/actaun201664030725
[1] Shenggen FAN. Sustainable intensification of agriculture is key to feeding Africa in the 21st century[J]. Front. Agr. Sci. Eng. , 2020, 7(4): 366-370.
[2] C. Wayne HONEYCUTT, Cristine L.S. MORGAN, Pipa ELIAS, Michael DOANE, John MESKO, Rob MYERS, LaKisha ODOM, Bianca MOEBIUS-CLUNE, Ron NICHOLS. Soil health: model programs in the USA[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 356-361.
[3] Rattan LAL. Managing soil quality for humanity and the planet[J]. Front. Agr. Sci. Eng. , 2020, 7(3): 251-253.
[4] Haiyan REN, Jie QIN, Baolong YAN, Alata, Baoyinhexige, Guodong HAN. Mass loss and nutrient dynamics during litter decomposition in response to warming and nitrogen addition in a desert steppe[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 64-70.
[5] Deli WANG, Ling WANG, Jushan LIU, Hui ZHU, Zhiwei ZHONG. Grassland ecology in China: perspectives and challenges[J]. Front. Agr. Sci. Eng. , 2018, 5(1): 24-43.
[6] Tongli WANG, Guangyu WANG, John L. INNES, Brad SEELY, Baozhang CHEN. ClimateAP: an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front. Agr. Sci. Eng. , 2017, 4(4): 448-458.
[7] Xiaojing WANG,Zhanhong MA,Yuying JIANG,Shouding SHI,Wancai LIU,Juan ZENG,Zhiwei ZHAO,Haiguang WANG. Modeling of the overwintering distribution of Puccinia striiformis f. sp. tritici based on meteorological data from 2001 to 2012 in China[J]. Front. Agr. Sci. Eng. , 2014, 1(3): 223-235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed