Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 373-380    https://doi.org/10.1007/s11704-009-0041-3
Research articles
Scale-free network modles with accelerating growth
Huan LI ,
Center of Modern Educational Technology, Shanghai University of Political Science and Law, Shanghai 201701, China;State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China;
 Download: PDF(620 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Complex networks are everywhere. A typical example is software network. Basing on analyzing evolutive structure of the software networks, we consider accelerating growth of network as power-law growth, which can be more easily generalized to real systems than linear growth. For accelerating growth via a power law and scale-free state with preferential linking, we focus on exploring the generic property of complex networks. Generally, two scenarios are possible. In one of them, the links are undirected. In the other scenario, the links are directed. We propose two models that can predict the emergence of power-law growth and scale-free state in good agreement with these two scenarios and can simulate much more real systems than existing scale-free network models. Moreover, we use the obtained predictions to fit accelerating growth and the connectivity distribution of software networks describing scale-free structure. The combined analytical and numerical results indicate the emergence of a novel set of models that considerably enhance our ability to understand and characterize complex networks, whose applicability reaches far beyond the quoted examples.
Keywords complex network      software network      scale-free network      accelerating growth      
Issue Date: 05 September 2009
 Cite this article:   
Huan LI. Scale-free network modles with accelerating growth[J]. Front. Comput. Sci., 2009, 3(3): 373-380.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0041-3
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/373
Myers C R. Software systems as complex networks: structure, function, and evolvabilityof software collaboration graphs. PhysicalReview E, 2003, 68(4): 046116

doi: 10.1103/PhysRevE.68.046116
Li H, Huang B, Lü J. Dynamical evolution analysis of the objectorientedsoftware systems. In: Proceedings of the2008 IEEE Congress on Evolutionary Computation (IEEE CEC 2008). Hong Kong, 2008, 3030―3035
Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology. ACM SIGCOMM Computer Communications Review, 1999, 29(4): 251―262

doi: 10.1145/316194.316229
Lawrence S, Giles C L. Accessibility of informationon the web. Nature, 1999, 400(6740): 107―109

doi: 10.1038/21987
Wasserman S, Faust K. Social Network Analysis. Cambridge, UK: Cambridge University Press, 1994
Fell D A, Wagner A. The small world of metabolism. Nature Biotechnology, 2000, 18(11): 1121―1122

doi: 10.1038/81025
Zhang Z Z, Zhou S G, Zou T, et al. Incompatibility networks as models of scale-freesmall-world graphs. European Physical JournalB, 2007, 60(2): 259―264

doi: 10.1140/epjb/e2007-00344-7
Erdos¨o P, Rényi A. On the evolution of randomgraphs. Pupl. Math. Inst. Hungar. Acad.Sci., 1960, 7: 17―61
Watts D J, Strogatz S H. Collective dynamics of smallworld networks. Nature, 1998, 393(6684): 440―442

doi: 10.1038/30918
Barabási A L, Albert R. Emergence of scaling in randomnetworks. Science, 1999, 286(5439): 509―512

doi: 10.1126/science.286.5439.509
Lü J, Chen G. A time-varying complex dynamicalnetwork model and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 2005, 50(6): 841―846

doi: 10.1109/TAC.2005.849233
Zhou J, Lu J, Lü J. Pinning adaptive synchronization of ageneral complex dynamical network. Automatica, 2008, 44(4): 996―1003
Zhou J, Lu J, Lü J. Adaptive synchronization of an uncertaincomplex dynamical network. IEEE Transactionson Automatic Control, 2006, 51(4): 652―656

doi: 10.1109/TAC.2006.872760
Lü J, Yu X, Chen G, Cheng D. Characterizingthe synchronizability of small-world dynamical networks. IEEE Transactions on Circuits and Systems I, 2004, 51(4): 787―796

doi: 10.1109/TCSI.2004.823672
Albert R, Barabási AL. Statisticalmechanics of complex networks. Reviewsof Modern Physics, 2002, 74(1): 47―97

doi: 10.1103/RevModPhys.74.47
Newman M. Thestructure and function of complex networks. SIAM Review, 2003, 45(2): 167―256

doi: 10.1137/S003614450342480
Amaral L A N, Scala A, Barthélémy M, Stanley H E. Classes of small-world networks. Proceedings of the National Academy of Sciences of the United Statesof America, 2000, 97(21): 11149―11152

doi: 10.1073/pnas.200327197
Dorogovtsev S N, Mendes J F. Effect of the acceleratinggrowth of communications networks on their structure. Physical Review E, 2001, 63(2): 025101

doi: 10.1103/PhysRevE.63.025101
Shi D, Chen Q, Liu L. Markov chain-based numerical method for degree distributionsof growing networks. Physical Review E, 2005, 71(3): 036140

doi: 10.1103/PhysRevE.71.036140
[1] Jing LIU, Mingxing ZHOU, Shuai WANG, Penghui LIU. A comparative study of network robustness measures[J]. Front. Comput. Sci., 2017, 11(4): 568-584.
[2] Wei DUAN, Zongchen FAN, Peng ZHANG, Gang GUO, Xiaogang QIU. Mathematical and computational approaches to epidemic modeling: a comprehensive review[J]. Front. Comput. Sci., 2015, 9(5): 806-826.
[3] Zihou WANG, Yanni HAN, Tao LIN, Yuemei XU, Song CI, Hui TANG. Topology-aware virtual network embedding based on closeness centrality[J]. Front Comput Sci, 2013, 7(3): 446-457.
[4] Yanni HAN, Deyi LI, Teng WANG. Identifying different community members in complex networks based on topology potential[J]. Front Comput Sci Chin, 2011, 5(1): 87-99.
[5] Zonghua LIU , Xiaoyan WU , Pak-Ming HUI , . An alternative approach to characterize the topology of complex networks and its application in epidemic spreading[J]. Front. Comput. Sci., 2009, 3(3): 324-334.
[6] Weifeng PAN , Yutao MA , Jing LIU , Yeyi QIN , Bing LI , . Class structure refactoring of object-oriented softwares using community detection in dependency networks[J]. Front. Comput. Sci., 2009, 3(3): 396-404.
[7] Lili RONG , Tianzhu GUO , Jiyong ZHANG , . A new centrality measure based on sub-tree[J]. Front. Comput. Sci., 2009, 3(3): 356-360.
[8] Chengyi XIA , Shiwen SUN , Feng RAO , Junqing SUN , Jinsong WANG , Zengqiang CHEN , . SIS model of epidemic spreading on dynamical networks with community[J]. Front. Comput. Sci., 2009, 3(3): 361-365.
[9] Shiwen SUN , Chengyi XIA , Junqing SUN , Zhenhai CHEN , Zengqiang CHEN , . Genealized collaboration networks in software systems: a case study of Linux kernels[J]. Front. Comput. Sci., 2009, 3(3): 421-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed