Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 361-365    https://doi.org/10.1007/s11704-009-0057-8
Research articles
SIS model of epidemic spreading on dynamical networks with community
Chengyi XIA 1, Shiwen SUN 1, Feng RAO 1, Junqing SUN 1, Jinsong WANG 1, Zengqiang CHEN 2,
1.Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300191, China;Key Laboratory of Computer Vision and System of Ministry of Education, Tianjin University of Technology, Tianjin 300191, China; 2.Department of Automation, Nankai University, Tianjin 300071, China;
 Download: PDF(505 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a new epidemic Susceptible-Infected-Susceptible (SIS) model to investigate the spreading behavior on networks with dynamical topology and community structure. Individuals in themodel are mobile agentswho are allowed to perform the inter-community (i.e., long-range) motion with the probability p. The mean-field theory is utilized to derive the critical threshold (λC) of epidemic spreading inside separate communities and the influence of the long-range motion on the epidemic spreading. The results indicate that λC is only related with the population density within the community, and the long-range motion will make the original disease-free community become the endemic state. Large-scale numerical simulations also demonstrate the theoretical approximations based on our new epidemic model. The current model and analysis will help us to further understand the propagation behavior of real epidemics taking place on social networks.
Keywords Susceptible-Infected-Susceptible (SIS) model      disease propagation      complex network      dynamical topology      community behavior      
Issue Date: 05 September 2009
 Cite this article:   
Feng RAO,Jinsong WANG,Chengyi XIA, et al. SIS model of epidemic spreading on dynamical networks with community[J]. Front. Comput. Sci., 2009, 3(3): 361-365.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0057-8
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/361
Costa L D F, Rodrigues F A, Travieso G, et al. Characterization of complex networks: a surveyof measurements. Advances in Physics, 2007, 56(1): 167―242

doi: 10.1080/00018730601170527
Thilo G, Ioannis G K. Robust oscillations in SISepidemics on adaptive networks: coarse-graining by automated momentclosure. Europhysics Letters, 2008, 82(3): 38004

doi: 10.1209/0295-5075/82/38004
Zhang Z Z, Zhou S G, Fang L J, et al. Maximal planar scale-free sierpinski networkswith small-world effect and power-law strength degree correlation. Europhysics Letters, 2007, 79(3): 38007

doi: 10.1209/0295-5075/79/38007
Zhang Z Z, Chen L C, Zhou S G, et al. Analytical solution of average path length forapollonian networks. Physical Review E, 2008, 77: 017102

doi: 10.1103/PhysRevE.77.017102
Watts D J, Strogatz S H. Co11ective dynamics of smallworld networks. Nature, 1998, 393: 440―442

doi: 10.1038/30918
Barabási A L, Albert R. Emergence of scaling in randomnetworks. Science, 1999, 286: 509―512

doi: 10.1126/science.286.5439.509
Zhou T, Fu Z Q, Wang B H. Epidemic dynamics on complex networks. Progress in Natural Science, 2006, 16(5): 452―457

doi: 10.1080/10020070612330019
Zhao M, Zhou T, Wang B H, et al. Relations between average distance, heterogeneityand network synchronizability. PhysicaA, 2006, 371: 773―780

doi: 10.1016/j.physa.2006.03.041
Wang X F, Xu J. Cascading failures in coupledmap lattices. Physical Review E, 2004, 70: 056113

doi: 10.1103/PhysRevE.70.056113
Sun S W, Liu Z X, Chen Z Q, et al. Error and attack tolerance of evolving networkswith local preferential attachment. PhysicaA, 2007, 373: 851―860

doi: 10.1016/j.physa.2006.05.049
Pastor-Satorras R, Vespignani A. Epidemic spreading in scale-freenetworks. Physical Review Letters, 2001, 86: 3200―3203

doi: 10.1103/PhysRevLett.86.3200
Barthélemy M, Barrat A, Pastor-Satorras R, et al. Dynamical patterns of epidemicoutbreaks in complex heterogeneous networks. Journal of Theoretical Biology, 2005, 235: 275―288

doi: 10.1016/j.jtbi.2005.01.011
Xia C Y, Liu Z X, Chen Z Q, et al. Dynamical spreading behavior of homogeneousand heterogeneous networks. Progress inNatural Science, 2007, 17(3): 358―365

doi: 10.1080/10020070612331343270
Zhou J, Liu Z H. Epidemic spreading in complexnetworks. Frontier of Physics in China, 2008, 3(3): 331―348

doi: 10.1007/s11467-008-0027-x
Olinky R, Stone L. Unexpected epidemic thresholdin heterogeneous networks: the role of disease transmission. Physical Review E, 2004, 69: 030902

doi: 10.1103/PhysRevE.70.030902
Yang R, Wang B H, Ren J, et al. Epidemic spreading on heterogeneous networkswith identical infectivity. Physics LettersA, 2007, 364: 189―193

doi: 10.1016/j.physleta.2006.12.021
Wang J Z, Liu Z R, Xu J H. Epidemic spreading on uncorrelated heterogeneous networkswith non-uniform transmission. PhysicaA, 2007, 382: 715―721

doi: 10.1016/j.physa.2007.04.034
Xia C Y, Liu Z X, Chen ZQ, et al. Epidemic spreading behavior with time delayon local-world evolving networks. Frontiersof Electrical and Electronic Engineering in China, 2008, 3(2): 129―136

doi: 10.1007/s11460-008-0033-3
Boccara N, Cheong M. Critical behavior of a probabilisticautomata network SIS model for the spread of an infectious diseasein a population of moving individuals. Journal of Physics A, 1993, 26(12): 3707―3717

doi: 10.1088/0305-4470/26/15/020
Miramontes O, Luque B. Dynamical small-world behaviorin an epidemic model of mobile individuals. Physcia D, 2002, 168(2): 379–385

doi: 10.1016/S0167-2789(02)00525-0
Frasca M, Buscarino A, Rizzo A, et al. Dynamical network model of infective mobileagents. Physical Review E, 2006, 74: 036110

doi: 10.1103/PhysRevE.74.036110
Newman ME J, Girvan M. Finding and evaluating communitystructure in networks. Physical ReviewE, 2004, 69: 026113

doi: 10.1103/PhysRevE.69.026113
Liu Z, Hu B. Epidemic spreading in communitynetworks. Europhysics Letters, 2005, 72(2): 315―321

doi: 10.1209/epl/i2004-10550-5
Sun H J, Gao Z Y. Dynamical behaviors of epidemicson scale-free networks with community structure. Phsyica A, 2007, 381: 491―496

doi: 10.1016/j.physa.2007.03.030
[1] Wei DUAN, Zongchen FAN, Peng ZHANG, Gang GUO, Xiaogang QIU. Mathematical and computational approaches to epidemic modeling: a comprehensive review[J]. Front. Comput. Sci., 2015, 9(5): 806-826.
[2] Zihou WANG, Yanni HAN, Tao LIN, Yuemei XU, Song CI, Hui TANG. Topology-aware virtual network embedding based on closeness centrality[J]. Front Comput Sci, 2013, 7(3): 446-457.
[3] Yanni HAN, Deyi LI, Teng WANG. Identifying different community members in complex networks based on topology potential[J]. Front Comput Sci Chin, 2011, 5(1): 87-99.
[4] Zonghua LIU , Xiaoyan WU , Pak-Ming HUI , . An alternative approach to characterize the topology of complex networks and its application in epidemic spreading[J]. Front. Comput. Sci., 2009, 3(3): 324-334.
[5] Weifeng PAN , Yutao MA , Jing LIU , Yeyi QIN , Bing LI , . Class structure refactoring of object-oriented softwares using community detection in dependency networks[J]. Front. Comput. Sci., 2009, 3(3): 396-404.
[6] Lili RONG , Tianzhu GUO , Jiyong ZHANG , . A new centrality measure based on sub-tree[J]. Front. Comput. Sci., 2009, 3(3): 356-360.
[7] Huan LI , . Scale-free network modles with accelerating growth[J]. Front. Comput. Sci., 2009, 3(3): 373-380.
[8] Shiwen SUN , Chengyi XIA , Junqing SUN , Zhenhai CHEN , Zengqiang CHEN , . Genealized collaboration networks in software systems: a case study of Linux kernels[J]. Front. Comput. Sci., 2009, 3(3): 421-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed