Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2009, Vol. 3 Issue (3) : 421-426    https://doi.org/10.1007/s11704-009-0053-Z
Research articles
Genealized collaboration networks in software systems: a case study of Linux kernels
Shiwen SUN 1, Chengyi XIA 1, Junqing SUN 1, Zhenhai CHEN 2, Zengqiang CHEN 3,
1.Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology, Tianjin University of Technology, Tianjin 300191, China;Key Laboratory of Computer Vision and System, Ministry of Education, Tianjin University of Technology, Tianjin 300191, China; 2.66366th Troops, PLA, Tangshan 064100, China; 3.Department of Automation, Nankai University, Tianjin 300071, China;
 Download: PDF(616 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The collaboration relationships between header files in the source code of Linux kernels are analyzed by constructing a weighted Header File Collaboration Network (HFCN): each node represents a header file; two nodes are connected if corresponding header files are both included in the same source file at least once; also the link weight is assigned to evaluate the intensity of co-inclusion of two header files. Through using appropriate non-weighted and weighted quantities, structural properties of two kinds of HFCN networks(HFCN-I and HFCN-II) are characterized and analyzed. The study of Linux kernels from the viewpoint of complex networks can provide a better description of the organizational principles and evolving mechanism of complex software systems.
Keywords complex network      generalized collaboration network      Linux kernel      header file collaboration network (HFCN)      topological properties      weighted quantities      
Issue Date: 05 September 2009
 Cite this article:   
Shiwen SUN,Chengyi XIA,Junqing SUN, et al. Genealized collaboration networks in software systems: a case study of Linux kernels[J]. Front. Comput. Sci., 2009, 3(3): 421-426.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-009-0053-Z
https://academic.hep.com.cn/fcs/EN/Y2009/V3/I3/421
Watts D J, Strogatz S H. Collective dynamics of small-worldnetworks. Nature, 1998, 393: 440―442

doi: 10.1038/30918
Barabási A-L, Albert R. Emergence of scaling in randomnetworks. Science, 1999, 286: 509―512

doi: 10.1126/science.286.5439.509
Albert R, Barabási A-L. Statistical mechanics ofcomplex networks. Reviews of Modern physics, 2002, 74: 47―97

doi: 10.1103/RevModPhys.74.47
Newman M E J. The structure and function of complex networks. SIAM REVIEW, 2003, 45(2): 167―256

doi: 10.1137/S003614450342480
Wang X F, Chen G. Complex networks: small-worldscale-free and beyond. IEEE Circuits andSystems Magazine, 2003, 3: 6―20

doi: 10.1109/MCAS.2003.1228503
Zhang Z, Chen L, Zhou S, et al. Analytical solution of average path length forApollonian networks. Physical Review E, 2008, 77: 017102

doi: 10.1103/PhysRevE.77.017102
Zhang Z, Zhou S, Qi Y, et al. Topologies and Laplacian spectra of a deterministicuniform recursive tree. The European PhysicalJournal B, 2008, 63: 507―513

doi: 10.1140/epjb/e2008-00262-2
Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the internet topology. ACM SIGCOMM Computer Communication Review, In:Proceedings of ACM SIGCOMM. 1999, 29: 251―262
Siganos G, Faloutsos M, Faloutsos P, et al. Power laws and the aslevel Internet topology. IEEE/ACMTransations on Networking, 2003, 11(4): 514―524
Vázquez A, Pastor-Satorras R, Vespignani A. Large-scale topological and dynamical properties of Internet. Physical Review E, 2002, 65: 066130

doi: 10.1103/PhysRevE.65.066130
Pastor-Satorras R, Vázquez A, Vespignani A. Dynamical and correlation properties of the Internet. Physical Review Letters, 2001, 87(25): 258701

doi: 10.1103/PhysRevLett.87.258701
Jeong H, Tombor B, Albert R, et al. The large-scale organization of metabolic networks. Nature, 2000, 407: 651―654

doi: 10.1038/35036627
Barrat A, Barthélémy M, Pastor-Satorras R, et al. The architectureof complex weighted networks. In: Proceedingsof the National Academy of Sciences, 2004, 101(11): 3747―3752
Newman M E J. Scientific collaboration networks. I. Network construction and fundamentalresults. Physical Review E, 2001, 64: 016131

doi: 10.1103/PhysRevE.64.016131
Newman M E J. Scientific collaboration networks. II. shortest paths, weighted networks,and centrality. Physical Review E, 2001, 64: 016132

doi: 10.1103/PhysRevE.64.016132
Myers C. Softwaresystems as complex networks: structure, function, and evolvabilityof software collaboration graphs. PhysicalReview E, 2003, 68: 046116

doi: 10.1103/PhysRevE.68.046116
Gecow A, Nowostawski M, Purvis M. Structural tendencies in complex systems developmentand their implication for software systems. Journal of Universal Computer Science, 2005, 11(2): 327―356
Valverde S, Cancho R F, Solé R V. Scale-free networks fromoptimal design. Europhysics Letters, 2002, 60(4): 512―517

doi: 10.1209/epl/i2002-00248-2
Valverde S, Solé R V. Logarithmicgrowth dynamics in software networks. EurophysicsLetters, 2005, 72(5): 858―864

doi: 10.1209/epl/i2005-10314-9
Valverde S, Solé R V. Network motifsin computational graphs: a case study in software architecture. Physical Review E, 2005, 72: 26107

doi: 10.1103/PhysRevE.72.026107
Valverde S, Solé R V. Hierarchicalsmall worlds in software architecture. Dynamics of Continuous Discrete and Impulsive Systems Series B: Applicationsand Algorithms, 2007, 14: 1―11
Shi M J, Li X, Wang X F. Evolving topology of java networks. In: Proceedings of the 6th World Congress Control on and Automation. Dalian, China, 2006, 1: 21―23
Challet D, Lombardoni A. Bug propagation and debuggingin asymmetric software structures. PhysicalReview E, 2004, 70: 046109

doi: 10.1103/PhysRevE.70.046109
de Moura A P S, Lai Y C, Motter A. Signatures of small-world and scale-free properties inlarge computer programs. Physical ReviewE, 2003, 68: 017102

doi: 10.1103/PhysRevE.68.017102
Ma Y T, He K Q, Du D H, et al. A complexity metrics set for largescale object-orientedsoftware systems. In: Proceedings of the6th IEEE International Conference on Computer and Information Technology(CIT’06). Seoul, Korea, 2006, 189―194
Liu J, Lü J, He K Q, et al. Characterizing the structuralquality of general complex software networks. International Journal of Bifurcation and Chaos, 2008, 18(2): 605―613

doi: 10.1142/S0218127408020537
Bovet D P, Cesati M. Understanding the Linux Kernel. 2nd ed. O’Reilly, 2002
[1] Wei DUAN, Zongchen FAN, Peng ZHANG, Gang GUO, Xiaogang QIU. Mathematical and computational approaches to epidemic modeling: a comprehensive review[J]. Front. Comput. Sci., 2015, 9(5): 806-826.
[2] Zihou WANG, Yanni HAN, Tao LIN, Yuemei XU, Song CI, Hui TANG. Topology-aware virtual network embedding based on closeness centrality[J]. Front Comput Sci, 2013, 7(3): 446-457.
[3] Yanni HAN, Deyi LI, Teng WANG. Identifying different community members in complex networks based on topology potential[J]. Front Comput Sci Chin, 2011, 5(1): 87-99.
[4] Zonghua LIU , Xiaoyan WU , Pak-Ming HUI , . An alternative approach to characterize the topology of complex networks and its application in epidemic spreading[J]. Front. Comput. Sci., 2009, 3(3): 324-334.
[5] Weifeng PAN , Yutao MA , Jing LIU , Yeyi QIN , Bing LI , . Class structure refactoring of object-oriented softwares using community detection in dependency networks[J]. Front. Comput. Sci., 2009, 3(3): 396-404.
[6] Lili RONG , Tianzhu GUO , Jiyong ZHANG , . A new centrality measure based on sub-tree[J]. Front. Comput. Sci., 2009, 3(3): 356-360.
[7] Huan LI , . Scale-free network modles with accelerating growth[J]. Front. Comput. Sci., 2009, 3(3): 373-380.
[8] Chengyi XIA , Shiwen SUN , Feng RAO , Junqing SUN , Jinsong WANG , Zengqiang CHEN , . SIS model of epidemic spreading on dynamical networks with community[J]. Front. Comput. Sci., 2009, 3(3): 361-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed