Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci Chin    0, Vol. Issue () : 187-195    https://doi.org/10.1007/s11704-010-0501-9
Modeling default risk via a hidden Markov model of multiple sequences
Wai-Ki CHING1(), Ho-Yin LEUNG1(), Zhenyu WU2(), Hao JIANG1()
1. Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Hong Kong, China; 2. Department of Finance and Management Science, N. Murray Edwards School of Business, University of Saskatchewan, Saskatoon, SK S7N 5A7, Canada
 Download: PDF(273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Default risk in commercial lending is one of the major concerns of the creditors. In this article, we introduce a new hidden Markov model (HMM) with multiple observable sequences (MHMM), assuming that all the observable sequences are driven by a common hidden sequence, and utilize it to analyze default data in a network of sectors. Efficient estimation method is then adopted to estimate the model parameters. To further illustrate the advantages of MHMM, we compare the hidden risk state process obtained by MHMM with that from the traditional HMMs using credit default data. We then consider two applications of our MHMM. The calculation of two important risk measures: Value-at-risk (VaR) and expected shortfall (ES) and the prediction of global risk state. We first compare the performance of MHMM and HMM in the calculation of VaR and ES in a portfolio of default-prone bonds. A logistic regression model is then considered for the prediction of global economic risk using our MHMM with default data. Numerical results indicate our model is effective for both applications.

Keywords bond      default      hidden Markov model (HMM)      value-at-risk (VaR)      expected shortfall (ES)      logistic regression model      prediction     
Corresponding Author(s): CHING Wai-Ki,Email:wching@hkusua.hku.hk; LEUNG Ho-Yin,Email:obliging@hkusua.hku.hk; WU Zhenyu,Email:wu@edwards.usask.ca; JIANG Hao,Email:jianghao191@163.com   
Issue Date: 05 June 2010
 Cite this article:   
Ho-Yin LEUNG,Wai-Ki CHING,Zhenyu WU, et al. Modeling default risk via a hidden Markov model of multiple sequences[J]. Front Comput Sci Chin, 0, (): 187-195.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-010-0501-9
https://academic.hep.com.cn/fcs/EN/Y0/V/I/187
Fig.1  Hidden sequence of “0’’ and “1’’ inferred by MHMM in different quarters
Fig.1  Hidden sequence of “0’’ and “1’’ inferred by MHMM in different quarters
Fig.2  Hidden sequence of “0’’ and “1’’ inferred by HMM in different quarters. (a) Consumer; (b) Energy; (c) Media; (d) Transportation
Fig.2  Hidden sequence of “0’’ and “1’’ inferred by HMM in different quarters. (a) Consumer; (b) Energy; (c) Media; (d) Transportation
SectorEnhanced risk (10-3)Normal risk (10-3)
Consumer2.9161.493
Energy4.1513.168
Media4.2841.874
Transportation7.5414.347
Tab.1  Default probability of a bond in MHMM
SectorEnhanced risk (10-3)Normal risk (10-3)
Consumer2.8171.284
Energy4.5592.802
Media4.2481.851
Transportation1.6584.967
Tab.2  Default probability of a bond in HMM
MHMMHMM
SectorVaRESVaRES
Consumer8.429.828.109.32
Energy11.7012.9312.0213.32
Media11.4512.8711.3512.85
Transportation17.8119.6634.3236.54
Tab.3  VaR and ES in MHMM and HMM at the 95% significance level
MHMMHMM
SectorVaRESVaRES
Consumer10.8311.6410.3211.26
Energy13.7614.8014.2015.52
Media13.8314.8213.8015.00
Transportation21.0322.0237.8539.98
Tab.4  VaR and ES in MHMM and HMM at the 99% significance level
Fig.3  Prediction probability of the real risk state for different quarters. Circle represents prediction probability
Fig.3  Prediction probability of the real risk state for different quarters. Circle represents prediction probability
Fig.4  Prediction accuracy for different (a) Unbalanced; (b) balanced
Fig.4  Prediction accuracy for different (a) Unbalanced; (b) balanced
Fig.5  Prediction errors for different . (a) Type A; (b) Type B
Fig.5  Prediction errors for different . (a) Type A; (b) Type B
1 Li D. On default correlation: a Copula function approach. Journal of Fixed Income , 2000, 9(4): 43-54
doi: 10.3905/jfi.2000.319253
2 McNeil A, Frey R, Embrechts P. Quantitative risk management: concepts, techniques and tools. Princeton University Press, 2005
3 Credit Suisse Financial Products. Credit Risk+ a Credit Risk Management Framework, 1997, http://www.csfb.com/institutional/research/creditrisk.html
4 Duffie D, Eckner A, Horel G, Saita L. Frailty correlated default, Graduate School of Business, Stanford University , 2006, Preprint
5 Das S, Duffie D, Kapadia N, Saita L. Common failings: how corporate defaults are correlated? Journal of Finance , 2007, 62(1): 93-117
doi: 10.1111/j.1540-6261.2007.01202.x
6 Moody’s Investment Services. The Binomial Expansion Method Applied to CBO/CLO Analysis. 1999
7 Davis M, Lo V. Infectious defaults. Quantitative Finance , 2001, 1(4): 382-387
doi: 10.1080/713665832
8 Davis M, Lo V. Modeling default correlation in bond portfolio. In: Alescander C, ed. Mastering Risk Volume 2: Applications. Financial Times, Prentice Hall , 2001, 141-151
9 Giampieri G, Davis M, Crowder M. Analysis of default data using hidden Markov models. Quantitative Finance , 2005, 5(1): 27-34
doi: 10.1080/14697680500039951
10 MacDonald I, Zucchini W. Hidden Markov and Other Models for Discrete-Valued Time Series. London:. Chapman & Hall, 1999
11 Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE , 1989, 77(2): 257-286
doi: 10.1109/5.18626
12 Ching W, Ng M. Markov Chains: Models, Algorithms and Applications. International Series on Operations Research and Management Science , New York: Springer, 2006
13 Ching W, Ng M, Wong K. Hidden Markov models and thier applications to customer relationship management. IMA Journal of Management Mathematics , 2004, 15(1): 13-24
doi: 10.1093/imaman/15.1.13
14 Ching W, Fung E, Ng M, Siu T, Li W. Interactive hidden Markov models and their applications. IMA Journal of Management Mathematics , 2007, 18(1): 85-97
doi: 10.1093/imaman/dpl014
15 Ching W, Siu T, Li L, Li T, Li W. Modeling default data via an interactive hidden Markov model, Computational Economics. Computational Economics , 2009, 34(1): 1-19
doi: 10.1007/s10614-009-9183-5
16 Ching W K, Leung H, Jiang H, Wu Z. Hidden Markov models for default risk. In: Proceedings of the 2nd International Symposium on Financial Information Processing (FIP), Beijing, China , 2009
17 Levinson S, Rabiner L, Sondhi M. An introduction to the application if theory of probabilistic functions of Markov process to automatic speech recognition. Bell System Technical Journal , 1983, 62: 1035-1074
18 Li X, Parizeau M, Plamondon R. Training hidden Markov models with multiple observation- a combinatorial method. IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000, 22(4): 371-377
doi: 10.1109/34.845379
19 Zhang D, Shi Y, Tian Y, Zhu M. A class of classification and regression methods by multiobjective programming. Frontiers of Computer Science in China , 2009, 3(2): 192-204
doi: 10.1007/s11704-009-0026-2
20 Zhou L, Lai K. Benchmarking binary classification models on data sets with different degrees of imbalance. Frontiers of Computer Science in China , 2009, 3(2): 205-216
doi: 10.1007/s11704-009-0027-1
21 Richard A, Johnson, Dean W. Wichern. Applied Multivariate Statistical Analysis. Prentice Hall International Series, U.S . 1992, 553
22 Siu T K, Ching W K, Fung E S, Ng M K. Extracting information from spot interest rates and credit ratings using double higher-order hidden Markov models. Computational Economics , 2005, 26(3): 69-102
doi: 10.1007/s10614-005-9010-6
[1] Xuan ZHANG, Cheng CHEN, Xiaoting WANG, Haitao JIANG, Wei ZHAO, Xuefeng CUI. MetaGIN: a lightweight framework for molecular property prediction[J]. Front. Comput. Sci., 2025, 19(5): 195912-.
[2] Zhaoyang HUANG, Zhichao XIAO, Chunyan AO, Lixin GUAN, Liang YU. Computational approaches for predicting drug-disease associations: a comprehensive review[J]. Front. Comput. Sci., 2025, 19(5): 195909-.
[3] Mengting NIU, Yaojia CHEN, Chunyu WANG, Quan ZOU, Lei XU. Computational approaches for circRNA-disease association prediction: a review[J]. Front. Comput. Sci., 2025, 19(4): 194904-.
[4] Yupei ZHANG, Yuxin LI, Yifei WANG, Shuangshuang WEI, Yunan XU, Xuequn SHANG. Federated learning-outcome prediction with multi-layer privacy protection[J]. Front. Comput. Sci., 2024, 18(6): 186604-.
[5] Zhong LI, Minxue PAN, Yu PEI, Tian ZHANG, Linzhang WANG, Xuandong LI. Empirically revisiting and enhancing automatic classification of bug and non-bug issues[J]. Front. Comput. Sci., 2024, 18(5): 185207-.
[6] Jingbin WANG, Weijie ZHANG, Zhiyong YU, Fangwan HUANG, Weiping ZHU, Longbiao CHEN. Route selection for opportunity-sensing and prediction of waterlogging[J]. Front. Comput. Sci., 2024, 18(4): 184503-.
[7] Zhanheng CHEN, Zhuhong YOU, Qinhu ZHANG, Zhenhao GUO, Siguo WANG, Yanbin WANG. In silico prediction methods of self-interacting proteins: an empirical and academic survey[J]. Front. Comput. Sci., 2023, 17(3): 173901-.
[8] Baiyou QIAO, Zhongqiang WU, Ling MA, Yicheng Zhou, Yunjiao SUN. Effective ensemble learning approach for SST field prediction using attention-based PredRNN[J]. Front. Comput. Sci., 2023, 17(1): 171601-.
[9] Tian CHENG, Kunsong ZHAO, Song SUN, Muhammad MATEEN, Junhao WEN. Effort-aware cross-project just-in-time defect prediction framework for mobile apps[J]. Front. Comput. Sci., 2022, 16(6): 166207-.
[10] Zhengxiong HOU, Hong SHEN, Xingshe ZHOU, Jianhua GU, Yunlan WANG, Tianhai ZHAO. Prediction of job characteristics for intelligent resource allocation in HPC systems: a survey and future directions[J]. Front. Comput. Sci., 2022, 16(5): 165107-.
[11] Juntao CHEN, Quan ZOU, Jing LI. DeepM6ASeq-EL: prediction of human N6-methyladenosine (m 6A) sites with LSTM and ensemble learning[J]. Front. Comput. Sci., 2022, 16(2): 162302-.
[12] Binbin ZHOU, Longbiao CHEN, Fangxun ZHOU, Shijian LI, Sha ZHAO, Gang PAN. Dynamic road crime risk prediction with urban open data[J]. Front. Comput. Sci., 2022, 16(1): 161609-.
[13] Yi REN, Ning XU, Miaogen LING, Xin GENG. Label distribution for multimodal machine learning[J]. Front. Comput. Sci., 2022, 16(1): 161306-.
[14] Yang SONG, Yunchun LI, Hailong YANG, Jun XU, Zerong LUAN, Wei LI. Adaptive watermark generation mechanism based on time series prediction for stream processing[J]. Front. Comput. Sci., 2021, 15(6): 156213-.
[15] Genan DAI, Xiaoyang HU, Youming GE, Zhiqing NING, Yubao LIU. Attention based simplified deep residual network for citywide crowd flows prediction[J]. Front. Comput. Sci., 2021, 15(2): 152317-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed