|
|
In silico prediction methods of self-interacting proteins: an empirical and academic survey |
Zhanheng CHEN1, Zhuhong YOU2( ), Qinhu ZHANG3, Zhenhao GUO3, Siguo WANG3, Yanbin WANG4 |
1. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, China 2. School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China 3. Institute of Machine Learning and Systems Biology, School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China 4. School of Cyber Science and Technology, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract In silico prediction of self-interacting proteins (SIPs) has become an important part of proteomics. There is an urgent need to develop effective and reliable prediction methods to overcome the disadvantage of high cost and labor intensive in traditional biological wet-lab experiments. The goal of our survey is to sum up a comprehensive overview of the recent literature with the computational SIPs prediction, to provide important references for actual work in the future. In this review, we first describe the data required for the task of DTIs prediction. Then, some interesting feature extraction methods and computational models are presented on this topic in a timely manner. Afterwards, an empirical comparison is performed to demonstrate the prediction performance of some classifiers under different feature extraction and encoding schemes. Overall, we conclude and highlight potential methods for further enhancement of SIPs prediction performance as well as related research directions.
|
Keywords
proteomics
self-interacting proteins
feature extraction
prediction model
|
Corresponding Author(s):
Zhuhong YOU
|
About author: Tongcan Cui and Yizhe Hou contributed equally to this work. |
Just Accepted Date: 18 March 2022
Issue Date: 09 October 2022
|
|
1 |
J D, Watson R M Cook-Deegan . Origins of the human genome project. The FASEB Journal, 1991, 5( 1): 8– 11
|
2 |
S, Min B, Lee S Yoon . Deep learning in bioinformatics. Briefings in Bioinformatics, 2017, 18( 5): 851– 869
|
3 |
P, Larrañaga B, Calvo R, Santana C, Bielza J, Galdiano I, Inza J A, Lozano R, Armañanzas G, Santafé A Pérez . Machine learning in bioinformatics. Briefings in Bioinformatics, 2006, 7( 1): 86– 112
|
4 |
A D, Baxevanis G, Bader D Wishart. Bioinformatics. John Wiley & Sons, 2020
|
5 |
D L Black . Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell, 2000, 103( 3): 367– 370
|
6 |
P James . Protein identification in the post-genome era: the rapid rise of proteomics. Quarterly Reviews of Biophysics, 1997, 30( 4): 279– 331
|
7 |
D, Eisenberg E M, Marcotte I, Xenarios T O Yeates . Protein function in the post-genomic era. Nature, 2000, 405( 6788): 823– 826
|
8 |
M, Kanehisa P Bork . Bioinformatics in the post-sequence era. Nature Genetics, 2003, 33( 3): 305– 310
|
9 |
D, Medini D, Serruto J, Parkhill D A, Relman C, Donati R, Moxon S, Falkow R Rappuoli . Microbiology in the post-genomic era. Nature Reviews Microbiology, 2008, 6( 6): 419– 430
|
10 |
S Hanash . Disease proteomics. Nature, 2003, 422( 6928): 226– 232
|
11 |
J F, Rual K, Venkatesan T, Hao T, Hirozane-Kishikawa A, Dricot N, Li G F, Berriz F D, Gibbons M, Dreze N, Ayivi-Guedehoussou N, Klitgord C, Simon M, Boxem S, Milstein J, Rosenberg D S, Goldberg L V, Zhang S L, Wong G, Franklin S, Li J S, Albala J, Lim C, Fraughton E, Llamosas S, Cevik C, Bex P, Lamesch R S, Sikorski J, Vandenhaute H Y, Zoghbi A, Smolyar S, Bosak R, Sequerra L, Doucette-Stamm M E, Cusick D E, Hill F P, Roth M Vidal . Towards a proteome-scale map of the human protein–protein interaction network. Nature, 2005, 437( 7062): 1173– 1178
|
12 |
U, Stelzl U, Worm M, Lalowski C, Haenig F H, Brembeck H, Goehler M, Stroedicke M, Zenkner A, Schoenherr S, Koeppen J, Timm S, Mintzlaff C, Abraham N, Bock S, Kietzmann A, Goedde E, Toksöz A, Droege S, Krobitsch B, Korn W, Birchmeier H, Lehrach E E Wanker . A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005, 122( 6): 957– 968
|
13 |
B, Blagoev I, Kratchmarova S E, Ong M, Nielsen L J, Foster M Mann . A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nature Biotechnology, 2003, 21( 3): 315– 318
|
14 |
E, Phizicky P I H, Bastiaens H, Zhu M, Snyder S Fields . Protein analysis on a proteomic scale. Nature, 2003, 422( 6928): 208– 215
|
15 |
Z H, Chen Z H, You L P, Li Z H, Guo P W, Hu H J Jiang. Combining LSTM network model and wavelet transform for predicting self-interacting proteins. In: Proceedings of the 15th International Conference on Intelligent Computing Theories and Application. 2019, 166– 174
|
16 |
C M Horejs . Good chemistry between proteins and materials. Nature Reviews Materials, 2019, 4( 7): 462– 462
|
17 |
W, Bao Z H, You D S Huang . CIPPN: computational identification of protein pupylation sites by using neural network. Oncotarget, 2017, 8( 65): 108867– 108879
|
18 |
Q, Huang Z, You X, Zhang Y Zhou . Prediction of protein–protein interactions with clustered amino acids and weighted sparse representation. International Journal of Molecular Sciences, 2015, 16( 5): 10855– 10869
|
19 |
Y A, Huang Z H, You X, Chen G Y Yan . Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Systems Biology, 2016, 10( 4): 120
|
20 |
Y K, Lei Z H, You Z, Ji L, Zhu D S Huang . Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinformatics, 2012, 13( 7): S3
|
21 |
X, Luo Z, You M, Zhou S, Li H, Leung Y, Xia Q Zhu . A highly efficient approach to protein interactome mapping based on collaborative filtering framework. Scientific Reports, 2015, 5: 7702
|
22 |
L, Wang Z H, You S X, Xia X, Chen X, Yan Y, Zhou F Liu . An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft Computing, 2018, 22( 10): 3373– 3381
|
23 |
Z H, You Y K, Lei J, Gui D S, Huang X Zhou . Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics, 2010, 26( 21): 2744– 2751
|
24 |
L, Zhu Z H, You D S Huang . Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing, 2013, 121: 99– 107
|
25 |
J Y, An Z H, You X, Chen D S, Huang Z W, Li G, Liu Y Wang . Identification of self-interacting proteins by exploring evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix. Oncotarget, 2016, 7( 50): 82440– 82449
|
26 |
J Q, Li Z H, You X, Li Z, Ming X Chen . PSPEL: in silico prediction of self-interacting proteins from amino acids sequences using ensemble learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14( 5): 1165– 1172
|
27 |
Z, Liu F, Guo J, Zhang J, Wang L, Lu D, Li F He . Proteome-wide prediction of self-interacting proteins based on multiple properties. Molecular & Cellular Proteomics, 2013, 12( 6): 1689– 1700
|
28 |
Y A, Huang Z H, You X, Gao L, Wong L Wang . Using weighted sparse representation model combined with discrete cosine transformation to predict protein-protein interactions from protein sequence. BioMed Research International, 2015, 2015: 902198
|
29 |
L P, Li Y B, Wang Z H, You Y, Li J Y An . PCLPred: a bioinformatics method for predicting protein–protein interactions by combining relevance vector machine model with low-rank matrix approximation. International Journal of Molecular Sciences, 2018, 19( 4): 1029
|
30 |
Y B, Wang Z H, You X, Li T H, Jiang L, Cheng Z H Chen . Prediction of protein self-interactions using stacked long short-term memory from protein sequences information. BMC Systems Biology, 2018, 12( 8): 129
|
31 |
Z H, Zhan Z H, You Y, Zhou K, Zheng Z W Li. An efficient LightGBM model to predict protein self-interacting using Chebyshev moments and Bi-gram. In: Proceedings of the 15th International Conference on Intelligent Computing Theories and Application. 2019, 453– 459
|
32 |
UniProt Consortium The . UniProt: a worldwide hub of protein knowledge. Nucleic Acids Research, 2019, 47( D1): D506– D515
|
33 |
L, Salwinski C S, Miller A J, Smith F K, Pettit J U, Bowie D Eisenberg . The database of interacting proteins: 2004 update. Nucleic Acids Research, 2004, 32( S1): D449– D451
|
34 |
K, Breuer A K, Foroushani M R, Laird C, Chen A, Sribnaia R, Lo G L, Winsor R E W, Hancock F S L, Brinkman D J Lynn . InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Research, 2013, 41( D1): D1228– D1233
|
35 |
S, Orchard M, Ammari B, Aranda L, Breuza L, Briganti F, Broackes-Carter N H, Campbell G, Chavali C, Chen N, Del-Toro M, Duesbury M, Dumousseau E, Galeota U, Hinz M, Iannuccelli S, Jagannathan R, Jimenez J, Khadake A, Lagreid L, Licata R C, Lovering B, Meldal A N, Melidoni M, Milagros D, Peluso L, Perfetto P, Porras A, Raghunath S, Ricard-Blum B, Roechert A, Stutz M, Tognolli Roey K, Van G, Cesareni H Hermjakob . The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2014, 42( D1): D358– D363
|
36 |
R, Oughtred C, Stark B J, Breitkreutz J, Rust L, Boucher C, Chang N, Kolas L, O'Donnell G, Leung R, McAdam F, Zhang S, Dolma A, Willems J, Coulombe-Huntington A, Chatr-Aryamontri K, Dolinski M Tyers . The BioGRID interaction database: 2019 update. Nucleic Acids Research, 2019, 47( D1): D529– D541
|
37 |
O, Clerc M, Deniaud S D, Vallet A, Naba A, Rivet S, Perez N, Thierry-Mieg S Ricard-Blum . MatrixDB: integration of new data with a focus on glycosaminoglycan interactions. Nucleic Acids Research, 2019, 47( D1): D376– D381
|
38 |
X, Liu S, Yang C, Li Z, Zhang J Song . SPAR: a random forest-based predictor for self-interacting proteins with fine-grained domain information. Amino Acids, 2016, 48( 7): 1655– 1665
|
39 |
Ø D, Trier A K, Jain T Taxt . Feature extraction methods for character recognition-a survey. Pattern Recognition, 1996, 29( 4): 641– 662
|
40 |
I, Guyon S, Gunn M, Nikravesh L A Zadeh. Feature Extraction: Foundations and Applications. Springer, 2008
|
41 |
H, Li Y, Wei L, Li C L P Chen . Hierarchical feature extraction with local neural response for image recognition. IEEE Transactions on Cybernetics, 2013, 43( 2): 412– 424
|
42 |
I, Omara F, Li H, Zhang W Zuo . A novel geometric feature extraction method for ear recognition. Expert Systems with Applications, 2016, 65: 127– 135
|
43 |
W, Shao Y, Ding H B, Shen D Zhang . Deep model-based feature extraction for predicting protein subcellular localizations from bio-images. Frontiers of Computer Science, 2017, 11( 2): 243– 252
|
44 |
L, Wei P, Xing J, Zeng J, Chen R, Su F Guo . Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier. Artificial Intelligence in Medicine, 2017, 83: 67– 74
|
45 |
S F, Altschul E V Koonin . Iterated profile searches with PSI-BLAST—a tool for discovery in protein databases. Trends in Biochemical Sciences, 1998, 23( 11): 444– 447
|
46 |
R, Mosca A, Céol A, Stein R, Olivella P Aloy . 3did: a catalog of domain-based interactions of known three-dimensional structure. Nucleic Acids Research, 2014, 42( D1): D374– D379
|
47 |
R D, Finn A, Bateman J, Clements P, Coggill R Y, Eberhardt S R, Eddy A, Heger K, Hetherington L, Holm J, Mistry E L L, Sonnhammer J, Tate M Punta . Pfam: the protein families database. Nucleic Acids Research, 2014, 42( D1): D222– D230
|
48 |
R D, Finn J, Clements S R Eddy . HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 2011, 39( S2): W29– W37
|
49 |
I, Markovsky K Usevich . Software for weighted structured low-rank approximation. Journal of Computational and Applied Mathematics, 2014, 256: 278– 292
|
50 |
F, Zernike F J M Stratton . Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Monthly Notices of the Royal Astronomical Society, 1934, 94( 5): 377– 384
|
51 |
Y B, Wang Z H, You L P, Li D S, Huang F F, Zhou S Yang . Improving prediction of self-interacting proteins using stacked sparse auto-encoder with PSSM profiles. International Journal of Biological Sciences, 2018, 14( 8): 983– 991
|
52 |
J, Xu L, Xiang Q, Liu H, Gilmore J, Wu J, Tang A Madabhushi . Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Transactions on Medical Imaging, 2016, 35( 1): 119– 130
|
53 |
P F, Brown P V, Desouza R L, Mercer V J D, Pietra J C Lai . Class-based n-gram models of natural language. Computational Linguistics, 1992, 18( 4): 467– 479
|
54 |
J B, Mariño R E, Banchs J M, Crego Gispert A, de P, Lambert J A R, Fonollosa M R Costa-Jussà . N-gram-based machine translation. Computational Linguistics, 2006, 32( 4): 527– 549
|
55 |
S, Cao W, Lu J, Zhou X Li. cw2vec: learning Chinese word embeddings with stroke n-gram information . In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018, 5053– 5061
|
56 |
M, Suzuki N, Itoh T, Nagano G, Kurata S Thomas. Improvements to n-gram language model using text generated from neural language model. In: Proceedings of ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2019, 7245– 7249
|
57 |
F R, Meng Z H, You X, Chen Y, Zhou J Y An . Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures. Molecules, 2017, 22( 7): 1119
|
58 |
L, Zhang C, Zhang R, Gao R, Yang Q Song . Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes. BMC Bioinformatics, 2016, 17( 1): 225
|
59 |
B, Yu W, Qiu C, Chen A, Ma J, Jiang H, Zhou Q Ma . SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics, 2020, 36( 4): 1074– 1081
|
60 |
J W, Cooley P A W, Lewis P D Welch . The fast Fourier transform and its applications. IEEE Transactions on Education, 1969, 12( 1): 27– 34
|
61 |
M, Kapralov A, Velingker A Zandieh. Dimension-independent sparse Fourier transform. In: Proceedings of 2019 Annual ACM-SIAM Symposium on Discrete Algorithms. 2019, 2709– 2728
|
62 |
H J Nussbaumer. The fast Fourier transform. In: Nussbaumer H J, ed. Fast Fourier Transform and Convolution Algorithms. Berlin, Heidelberg: Springer, 1981, 80– 111
|
63 |
Z H, Chen Z H, You L P, Li Y B, Wang L, Wong H C Yi . Prediction of self-interacting proteins from protein sequence information based on random projection model and fast Fourier transform. International Journal of Molecular Sciences, 2019, 20( 4): 930
|
64 |
I, Babuška E, Vitásek F Kroupa . Some applications of the discrete Fourier transform to problems of crystal lattice deformation I. Cechoslovackij Fiziceskij Zurnal B, 1960, 10( 6): 419– 427
|
65 |
A V Anand. A brief study of discrete and fast Fourier transforms. The University of Chicago, Dissertation, 2010
|
66 |
D Sundararajan. Fourier Analysis—A Signal Processing Approach. Singapore: Springer, 2018
|
67 |
I Daubechies . The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 1990, 36( 5): 961– 1005
|
68 |
D Zhang. Wavelet transform. In: Zhang D, ed. Fundamentals of Image Data Mining. Cham: Springer, 2019, 35– 44
|
69 |
S Mallat . Zero-crossings of a wavelet transform. IEEE Transactions on Information Theory, 1991, 37( 4): 1019– 1033
|
70 |
C Q G, Muñoz A A, Jiménez F P G Márquez . Wavelet transforms and pattern recognition on ultrasonic guides waves for frozen surface state diagnosis. Renewable Energy, 2018, 116: 42– 54
|
71 |
T, Chang C C J Kuo . Texture analysis and classification with tree-structured wavelet transform. IEEE Transactions on Image Processing, 1993, 2( 4): 429– 441
|
72 |
P, Abry S G, Roux H, Wendt P, Messier A G, Klein N, Tremblay P, Borgnat S, Jaffard B, Vedel J, Coddington L A Daffner . Multiscale anisotropic texture analysis and classification of photographic prints: art scholarship meets image processing algorithms. IEEE Signal Processing Magazine, 2015, 32( 4): 18– 27
|
73 |
A, Srinivasan P, Battacharjee A, Prasad G Sanyal. Brain MR image analysis using discrete wavelet transform with fractal feature analysis. In: Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA). 2018, 1660– 1664
|
74 |
D, Gupta S Choubey . Discrete wavelet transform for image processing. International Journal of Emerging Technology and Advanced Engineering, 2015, 4( 3): 598– 602
|
75 |
J, Chen Z, Li J, Pan G, Chen Y, Zi J, Yuan B, Chen Z He . Wavelet transform based on inner product in fault diagnosis of rotating machinery: a review. Mechanical Systems and Signal Processing, 2016, 70–71: 1– 35
|
76 |
Z H, Chen L P, Li Z, He J R, Zhou Y, Li L Wong . An improved deep forest model for predicting self-interacting proteins from protein sequence using wavelet transformation. Frontiers in Genetics, 2019, 10: 90
|
77 |
C C Tseng . Design of fractional order digital FIR differentiators. IEEE Signal Processing Letters, 2001, 8( 3): 77– 79
|
78 |
N, Sengupta N Kasabov . Spike-time encoding as a data compression technique for pattern recognition of temporal data. Information Sciences, 2017, 406–407: 133– 145
|
79 |
E S L, Gastal M M Oliveira . High-order recursive filtering of non-uniformly sampled signals for image and video processing. Computer Graphics Forum, 2015, 34( 2): 81– 93
|
80 |
P A, Haigh S T, Le S, Zvanovec Z, Ghassemlooy P, Luo T, Xu P, Chvojka T, Kanesan E, Giacoumidis P, Canyelles-Pericas H L, Minh W, Popoola S, Rajbhandari I, Papakonstantinou I Darwazeh . Multi-band carrier-less amplitude and phase modulation for bandlimited visible light communications systems. IEEE Wireless Communications, 2015, 22( 2): 46– 53
|
81 |
X, Shi H, Feng M, Zhai T, Yang B Hu . Infinite impulse response graph filters in wireless sensor networks. IEEE Signal Processing Letters, 2015, 22( 8): 1113– 1117
|
82 |
Z H, Chen Z H, You L P, Li Y B, Wang Y, Qiu P W Hu . Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genomics, 2019, 20( 13): 928
|
83 |
J, Chen T, Ma C Xiao. FastGCN: fast learning with graph convolutional networks via importance sampling. In: Proceedings of the 6th International Conference on Learning Representations, 2018
|
84 |
L, Wang Z H, You X, Yan K, Zheng Z W Li. GCNSP: a novel prediction method of self-interacting proteins based on graph convolutional networks. In: Proceedings of the 16th International Conference on Intelligent Computing Theories and Application. 2020, 109– 120
|
85 |
Z, Zeng S, Espino A, Roy X, Li S A, Khan S E, Clare X, Jiang R, Neapolitan Y Luo . Using natural language processing and machine learning to identify breast cancer local recurrence. BMC Bioinformatics, 2018, 19( 17): 498
|
86 |
V D, Badal P J, Kundrotas I A Vakser . Natural language processing in text mining for structural modeling of protein complexes. BMC Bioinformatics, 2018, 19( 1): 84
|
87 |
K, Yu T, Zhao P, Zhao J Zhang. Extraction of protein-protein interactions using natural language processing based pattern matching. In: Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2017, 1292– 1295
|
88 |
J, Lee W, Yoon S, Kim D, Kim S, Kim C H, So J Kang . BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 2020, 36( 4): 1234– 1240
|
89 |
Z H, Chen Z H, You W B, Zhang Y B, Wang L, Cheng D Alghazzawi . Global vectors representation of protein sequences and its application for predicting self-interacting proteins with multi-grained cascade forest model. Genes, 2019, 10( 11): 924
|
90 |
D, Wang P, Cui W Zhu. Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1225– 1234
|
91 |
S, Chang W, Han J, Tang G J, Qi C C, Aggarwal T S Huang. Heterogeneous network embedding via deep architectures. In: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2015, 119– 128
|
92 |
X, Wang P, Cui J, Wang J, Pei W, Zhu S Yang. Community preserving network embedding. In: Proceedings of the Thirty-first AAAI Conference on Artificial Intelligence. 2017, 203– 209
|
93 |
B, Perozzi R, Al-Rfou S Skiena. Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on KNOWLEDGE DISCOVERY and Data Mining. 2014, 701– 710
|
94 |
C, Tu W, Zhang Z, Liu M Sun. Max-margin deepwalk: discriminative learning of network representation. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. 2016, 3889– 3895
|
95 |
A, Shrestha M Won. DeepWalking: enabling smartphone-based walking speed estimation using deep learning. In: Proceedings of 2018 IEEE global communications conference (GLOBECOM). 2018, 1– 6
|
96 |
J, Tang M, Qu M, Wang M, Zhang J, Yan Q Mei. LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web. 2015, 1067– 1077
|
97 |
A, Grover J Leskovec. node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 855– 864
|
98 |
J, Peng J, Guan X Shang . Predicting Parkinson's disease genes based on node2vec and autoencoder. Frontiers in Genetics, 2019, 10: 226
|
99 |
S, Cao W, Lu Q Xu. Grarep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. 2015, 891– 900
|
100 |
M, Ou P, Cui J, Pei Z, Zhang W Zhu. Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 1105– 1114
|
101 |
A, Galassi M, Lippi P Torroni . Attention in natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32( 10): 4291– 4308
|
102 |
K, Han A, Xiao E, Wu J, Guo C, Xu Y Wang. Transformer in transformer. In: Proceedings of the 35th Conference on Neural Information Processing Systems. 2021, 34
|
103 |
Q, Dai Q, Li J, Tang D Wang. Adversarial network embedding. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. 2018, 2167– 2174
|
104 |
S, Yuan X, Wu Y Xiang. SNE: signed network embedding. In: Proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. 2017, 183– 195
|
105 |
T, He K C C Chan . MISAGA: an algorithm for mining interesting subgraphs in attributed graphs. IEEE Transactions on Cybernetics, 2018, 48( 5): 1369– 1382
|
106 |
H, Liu H, Mao Y Fu. Robust multi-view feature selection. In: Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM). 2016, 281– 290
|
107 |
T, He Y, Liu T H, Ko K C C, Chan Y S Ong . Contextual correlation preserving multiview featured graph clustering. IEEE Transactions on Cybernetics, 2020, 50( 10): 4318– 4331
|
108 |
T, He L, Bai Y S Ong. Graph joint attention networks. 2021, arXiv preprint arXiv:2102.03147
|
109 |
T N, Kipf M Welling. Semi-supervised classification with graph convolutional networks. In: Proceedings of the 5th International Conference on Learning Representations. 2016
|
110 |
V, Vapnik A Chervonenkis. A note on one class of perceptrons. Automation and Remote Control, 1964, 25: 821− 837
|
111 |
C J C Burges . A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2( 2): 121– 167
|
112 |
Y, Liu K, Wen Q, Gao X, Gao F Nie . SVM based multi-label learning with missing labels for image annotation. Pattern Recognition, 2018, 78: 307– 317
|
113 |
S, Tong D Koller . Support vector machine active learning with applications to text classification. The Journal of Machine Learning Research, 2002, 2: 45– 66
|
114 |
K, Kowsari D E, Brown M, Heidarysafa K J, Meimandi M S, Gerber L E Barnes. Hdltex: hierarchical deep learning for text classification. In: Proceedings of the 16th IEEE International Conference on Machine Learning and Applications (ICMLA). 2017, 364– 371
|
115 |
T Harris . Credit scoring using the clustered support vector machine. Expert Systems with Applications, 2015, 42( 2): 741– 750
|
116 |
S, Maldonado C, Bravo J, López J Pérez . Integrated framework for profit-based feature selection and SVM classification in credit scoring. Decision Support Systems, 2017, 104: 113– 121
|
117 |
P, Pławiak M, Abdar U R Acharya . Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Applied Soft Computing, 2019, 84: 105740
|
118 |
Z H, Chen Z H, You L P, Li Y B, Wang X Li. RP-FIRF: prediction of self-interacting proteins using random projection classifier combining with finite impulse response filter. In: Proceedings of the 14th International Conference on Intelligent Computing Theories and Application. 2018, 232– 240
|
119 |
X, Zhang S Liu . RBPPred: predicting RNA-binding proteins from sequence using SVM. Bioinformatics, 2017, 33( 6): 854– 862
|
120 |
G, Orlando D, Raimondi T, Khan T, Lenaerts W F Vranken . SVM-dependent pairwise HMM: an application to protein pairwise alignments. Bioinformatics, 2017, 33( 24): 3902– 3908
|
121 |
S, Huang N, Cai P P, Pacheco S, Narrandes Y, Wang W Xu . Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics, 2018, 15( 1): 41– 51
|
122 |
W W Hsieh. Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels. Cambridge: Cambridge University Press, 2009
|
123 |
M E Tipping. The relevance vector machine. In: Proceedings of the 12th International Conference on Neural Information Processing Systems. 1999, 652– 658
|
124 |
S, Kaltwang S, Todorovic M Pantic . Doubly sparse relevance vector machine for continuous facial behavior estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38( 9): 1748– 1761
|
125 |
H S, Karthik J Manikandan. Evaluation of relevance vector machine classifier for a real-time face recognition system. In: Proceedings of 2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). 2017, 26– 30
|
126 |
B, Demir S Erturk . Hyperspectral image classification using relevance vector machines. IEEE Geoscience and Remote Sensing Letters, 2007, 4( 4): 586– 590
|
127 |
B, Gholami W M, Haddad A R Tannenbaum . Relevance vector machine learning for neonate pain intensity assessment using digital imaging. IEEE Transactions on Biomedical Engineering, 2010, 57( 6): 1457– 1466
|
128 |
A, Widodo E Y, Kim J D, Son B S, Yang A C C, Tan D S, Gu B K, Choi J Mathew . Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Systems with Applications, 2009, 36( 3): 7252– 7261
|
129 |
T, Wang H, Xu J, Han E, Elbouchikhi Hachemi Benbouzid M El . Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach. IEEE Transactions on Power Electronics, 2015, 30( 12): 7006– 7018
|
130 |
H, Mehrotra R, Singh M, Vatsa B Majhi . Incremental granular relevance vector machine: a case study in multimodal biometrics. Pattern Recognition, 2016, 56: 63– 76
|
131 |
L, Breiman A Cutler. State of the art of data mining using Random forest. In: Proceedings of the Salford Data Mining Conference, San Diego, USA. 2012, 24– 25
|
132 |
T K. Random decision forests Ho. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition. 1995, 278– 282
|
133 |
T K Ho . The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20( 8): 832– 844
|
134 |
T K Ho . A data complexity analysis of comparative advantages of decision forest constructors. Pattern Analysis & Applications, 2002, 5( 2): 102– 112
|
135 |
U M, Fayyad K B Irani. The attribute selection problem in decision tree generation. In: Proceedings of the 10th National Conference on Artificial Intelligence. 1992, 104– 110
|
136 |
J J, Rodriguez L I, Kuncheva C J Alonso . Rotation forest: a new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28( 10): 1619– 1630
|
137 |
J, Xia P, Du X, He J Chanussot . Hyperspectral remote sensing image classification based on rotation forest. IEEE Geoscience and Remote Sensing Letters, 2014, 11( 1): 239– 243
|
138 |
P, Du A, Samat B, Waske S, Liu Z Li . Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 38– 53
|
139 |
H, Lu L, Yang K, Yan Y, Xue Z Gao . A cost-sensitive rotation forest algorithm for gene expression data classification. Neurocomputing, 2017, 228: 270– 276
|
140 |
Z, Zhao Y, Shkolnisky A Singer . Fast steerable principal component analysis. IEEE Transactions on Computational Imaging, 2016, 2( 1): 1– 12
|
141 |
M Ringnér . What is principal component analysis?. Nature Biotechnology, 2008, 26( 3): 303– 304
|
142 |
S, Hochreiter J Schmidhuber. Long short-term memory. Neural Computation, 1997, 9(8): 1735– 1780
|
143 |
A Darmochwał . The Euclidean space. Formalized Mathematics, 1991, 2( 4): 599– 603
|
144 |
K X, Chiong M Shum . Random projection estimation of discrete-choice models with large choice sets. Management Science, 2019, 65( 1): 256– 271
|
145 |
T I, Cannings R J Samworth . Random-projection ensemble classification. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2017, 79( 4): 959– 1035
|
146 |
A, Schclar L Rokach. Random projection ensemble classifiers. In: Proceedings of the 11th International Conference on Enterprise Information Systems. 2009, 309– 316
|
147 |
M, Linial N, Linial N, Tishby G Yona . Global self-organization of all known protein sequences reveals inherent biological signatures. Journal of Molecular Biology, 1997, 268( 2): 539– 556
|
148 |
N, Goel G, Bebis A Nefian. Face recognition experiments with random projection. In: Proceedings of SPIE 5779, Biometric Technology for Human Identification II. 2005, 426– 437
|
149 |
C, Chen C M, Vong C M, Wong W, Wang P K Wong . Efficient extreme learning machine via very sparse random projection. Soft Computing, 2018, 22( 11): 3563– 3574
|
150 |
E J, Candes J, Romberg T Tao . Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52( 2): 489– 509
|
151 |
D L Donoho . Compressed sensing. IEEE Transactions on Information Theory, 2006, 52( 4): 1289– 1306
|
152 |
E, Bingham H Mannila. Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2001, 245– 250
|
153 |
J, Zhang M, Zhu P, Chen B Wang . DrugRPE: random projection ensemble approach to drug-target interaction prediction. Neurocomputing, 2017, 228: 256– 262
|
154 |
J, Jiang N, Wang P, Chen C, Zheng B Wang . Prediction of protein hotspots from whole protein sequences by a random projection ensemble system. International Journal of Molecular Sciences, 2017, 18( 7): 1543
|
155 |
H, Ge L, Sun Y, Yao J Yu. An automatic motif recognition algorithm in DNA sequences based on particle swarm optimization and random projection. In: Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 2017, 2241– 2243
|
156 |
G E, Dahl J W, Stokes L, Deng D Yu. Large-scale malware classification using random projections and neural networks. In: Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, 3422– 3426
|
157 |
G, Hinton L, Deng D, Yu G, Dahl A R, Mohamed N, Jaitly A, Senior V, Vanhoucke P, Nguyen B Kingsbury . Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Processing Magazine, 2012, 29( 6): 82– 97
|
158 |
G E, Dahl D, Yu L, Deng A Acero . Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20( 1): 30– 42
|
159 |
D, Ciregan U, Meier J Schmidhuber. Multi-column deep neural networks for image classification. In: Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012, 3642– 3649
|
160 |
C, Szegedy A, Toshev D Erhan. Deep neural networks for object detection. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. 2013, 2553– 2561
|
161 |
Y, LeCun Y, Bengio G Hinton . Deep learning. Nature, 2015, 521( 7553): 436– 444
|
162 |
I, Goodfellow Y, Bengio A Courville. Deep Learning. Cambridge: MIT Press, 2016
|
163 |
Z H, Zhou J Feng . Deep forest. National Science Review, 2019, 6( 1): 74– 86
|
164 |
L Breiman . Random forests. Machine Learning, 2001, 45( 1): 5– 32
|
165 |
T, Chen C Guestrin. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016, 785– 794
|
166 |
T, Chen T, He M, Benesty V, Khotilovich Y, Tang H, Cho K Chen. Xgboost: extreme gradient boosting. R package version 0.4–2, 2015, 1(4): 1– 4
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|