Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front Comput Sci    2012, Vol. 6 Issue (2) : 230-241    https://doi.org/10.1007/s11704-012-2872-6
RESEARCH ARTICLE
An approach for automatic sleep stage scoring and apnea-hypopnea detection
Tim SCHLüTER(), Stefan CONRAD
Institute of Computer Science, Heinrich Heine University, 40225 Düsseldorf, Germany
 Download: PDF(407 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this article we present an application of data mining to the medical domain sleep research, an approach for automatic sleep stage scoring and apnea-hypopnea detection. By several combined techniques (Fourier and wavelet transform, derivative dynamic time warping, and waveform recognition), our approach extracts meaningful features (frequencies and special patterns like k-complexes and sleep spindles) from physiological recordings containing EEG, ECG, EOG and EMG data. Based on these pieces of information, an ensemble of decision trees is constructed using the principle of bagging, which classifies sleep epochs in their sleep stages according to the rules by Rechtschaffen and Kales and annotates occurrences of apnea-hypopnea (total or partial cessation of respiration). After that, casebased reasoning is applied in order to improve quality. We tested and evaluated our approach on several large public databases from PhysioBank, which showed an overall accuracy of 95.2% for sleep stage scoring and 94.5% for classifying minutes as apneic or non-apneic.

Keywords time series      data processing      signal processing      feature extraction      pattern classification      biomedical signal processing      sleep     
Corresponding Author(s): SCHLüTER Tim,Email:schlueter@cs.uni-duesseldorf.de   
Issue Date: 01 April 2012
 Cite this article:   
Tim SCHLüTER,Stefan CONRAD. An approach for automatic sleep stage scoring and apnea-hypopnea detection[J]. Front Comput Sci, 2012, 6(2): 230-241.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-012-2872-6
https://academic.hep.com.cn/fcs/EN/Y2012/V6/I2/230
1 Boyle L N, Tippin J, Paul A, Rizzo M. Driver performance in the moments surrounding a microsleep. Transportation Research , 2008, 11(2): 126-136
2 Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Public Health Service, US Government Printing Office , 1968
3 Keogh E, Pazzani M. Derivative dynamic time warping. In: Proceedings of the 1st SIAM International Conference on Data Mining . 2001
4 Hanaoka M, Kobayashi M, Yamazaki H. Automatic sleep stage scoring based on waveform recognition method and decision-tree learning. Systems and Computers in Japan , 2002, 33(11): 1-13
doi: 10.1002/scj.10248
5 Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R, Mietus J, Moody G, Peng C K, Stanley H. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation , 2000, 101(23): e215-e220
6 Borbely A. Secrets of Sleep. New York: Basic Books, 1986
7 Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. The New England Journal of Medicine , 1993, 328(17): 1230-1235
doi: 10.1056/NEJM199304293281704
8 Penzel T, Moody G, Mark R, Goldberger A, Peter J. The apnea-ECG database. In: Proceedings of Computers in Cardiology . 2000, 255-258
9 American Academy of Sleep Medicine Task Force. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep , 1999, 22(5): 667-689
10 Smith J R, Karacan I. EEG sleep stage scoring by an automatic hybrid system. Electroencephalography and Clinical Neurophysiology , 1971, 31(3): 231-237
doi: 10.1016/0013-4694(71)90092-7
11 Anderer P, Gruber G, Parapatics S,Woertz M,Miazhynskaia T, Klosch G, Saletu B, Zeitlhofer J, Barbanoj M J, Danker-Hopfe H, Himanen SL, Kemp B, Penzel T, Grozinger M, Kunz D, Rappelsberger P, Schlogl A, Dorffner G. An e-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the somnolyzer 24 × 7 utilizing the siesta database. Neuropsychobiology , 2005, 51(3): 115-133
doi: 10.1159/000085205
12 Park H, Oh J, Jeong D, Park K. Automated sleep stage scoring using hybrid rule- and case-based reasoning. Computers and Biomedical Research , 2000, 33(5): 330-349
doi: 10.1006/cbmr.2000.1549
13 Louis R, Lee J, Stephenson R. Design and validation of a computerbased sleep-scoring algorithm. Journal of Neuroscience Methods , 2004, 133(1-2): 71-80
doi: 10.1016/j.jneumeth.2003.09.025
14 Flexer A, Gruber G, Dorffner G. A reliable probabilistic sleep stager based on a single EEG signal. Artificial Intelligence in Medicine , 2005, 33(3): 199-207
doi: 10.1016/j.artmed.2004.04.004
15 Schlüter T, Ki?els T, Conrad S. AS3: a framework for automatic sleep stage scoring. In: Proceedings of 2010 IADIS European Conference Data Mining . 2010
16 Penzel T, McNames J, de Chazal P, Raymond B, Murray A, Moody G. Systematic comparison of different algorithms for apnea detection based on electrocardiogram recordings. Medical and Biological Engineering and Computing , 2002, 40(4): 402-407
doi: 10.1007/BF02345072
17 McNames J N, Fraser A. Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram. In: Proceedings of Computers in Cardiology 2000 . 2000, 749-752
18 Raymond B, Cayton R M, Bates R A, Chappell M. Screening for obstructive sleep apnea based on the electrocardiogram. In: Proceedings of Computers in Cardiology 2000 . 2000, 267-270
19 de Chazal P, Heneghan C, Sheridan E, Reilly R, Nolan P O’Malley M. Automatic classification of sleep apnea epochs using the electrocardiogram. In: Proceedings of Computers in Cardiology . 2000, 745-748
20 Mietus J E, Peng C K, Ivanov P C, Goldberger A L. Detection of obstructive sleep apnea from cardiac interbeat interval time series. In: Proceedings of Computers in Cardiology . 2000, 753-756
21 Zywietz C W, von Einem V, Widiger B, Joseph G. ECG analysis for sleep apnea detection. Methods of Information in Medicine , 2004, 43(1): 56-59
22 Khandoker A H, Gubbi J, Palaniswami M. Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings. IEEE Transactions on Information Technology in Biomedicine , 2009, 13(6): 1057-1067
doi: 10.1109/TITB.2009.2031639
23 Mendez MO, Corthout J, Van Huffel S, Matteucci M, Penzel T, Cerutti S, Bianchi A M. Automatic screening of obstructive sleep apnea from the ECG based on empirical mode decomposition and wavelet analysis. Physiological Measurement , 2010, 31(3): 273-289
doi: 10.1088/0967-3334/31/3/001
24 Chong S K, Gaber M M, Krishnaswamy S, Loke S W. Energy conservation in wireless sensor networks: a rule-based approach. Knowledge and Information Systems , 2011, 28(3): 579-614
doi: 10.1007/s10115-011-0380-x
25 Eckert M, Bry F. Rule-based composite event queries: the language XChangeEQ and its semantics. Knowledge and Information Systems , 2010, 25(3): 551-573
doi: 10.1007/s10115-010-0334-8
26 Task Force European Society of Cardiology / North American Society of Pacing Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation , 1996, 93(5): 1043-1065
doi: 10.1161/01.CIR.93.5.1043
27 Woertz M, Gruber G, Parapatics S, Anderer P, Miazhynskaia T, Rosipal R, Saletu B, Dorffner G. Automatic sleep apnea detection: analysis of apnea distribution with respect to sleep stages depending on the severity of sleep apnea. In: Proceedings of WASM . 2005
28 Malmivuo J, Plonsey R. Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press, 1995
doi: 10.1093/acprof:oso/9780195058239.001.0001
29 Boggess A, Narcowich F J, Donoho D L, Donoho P L. A first course in wavelets with Fourier analysis. Physics Today , 2002, 55(5): 63-64
doi: 10.1063/1.1485592
30 Lyons R G. Understanding Digital Signal Processing. Upper Saddle River: Prentice Hall, 2004
31 Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing , 1978, 26(1): 43-49
doi: 10.1109/TASSP.1978.1163055
32 Rath T, Manmatha R.Word image matching using dynamic time warping. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2003, 521-527
33 Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word recognition. In: Waibel A, Lee K F, eds. Readings In Speech Recognition . San Francisco: Morgan Kaufmann Publishers Inc, 1990
34 Fujimori B, Yokota T, Ishibashi Y, Takei T. Analysis of the electroencephalogram of children by histogram method. Electroencephalography and Clinical Neurophysiology , 1958, 10(2): 241-252
doi: 10.1016/0013-4694(58)90031-2
35 Grossi V, Turini F. Stream mining: a novel architecture for ensemblebased classification. Knowledge and Information Systems (in Press)
36 Zhou Z H, Li M. Semi-supervised learning by disagreement. Knowledge and Information Systems , 2010, 24(3): 415-439
doi: 10.1007/s10115-009-0206-2
37 Katakis I, Tsoumakas G, Vlahavas I P. Tracking recurring contexts using ensemble classifiers: an application to email filtering. Knowledge and Information Systems , 2010, 22(3): 371-391
38 Mitchell T. Machine Learning. New York: McGraw-Hill, 1997
doi: 10.1007/BF00058655
39 BreimanL. Bagging predictors. Machine Learning , 1996, 24(2): 123-140
doi: 10.1006/jcss.1997.1504
40 Freund Y, Schapire R E. A decisiontheoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences , 1997, 55(1): 119-139 ,
doi: 10.1023/A:1010933404324
41 Breiman L. Random forests. Machine Learning , 2001, 45(1): 5-32
doi: 10.1109/34.709601
42 Ho T K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence , 1998, 20(8): 832-844
doi: 10.1023/A:1007607513941
43 Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning , 2000, 40(2): 139-157
44 Quinlan J R. Bagging, boosting, and c4.5. In: Proceedings of the 13th National Conference on Artificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference. 1996, 725-730
doi: 10.1007/978-3-540-72523-7_12
45 Sun S. Ensemble learning methods for classifying EEG signals. In: Proceedings of the 7th International Workshop on Multiple Classifier Systems . 2007, 113-120
46 Rzepakowski P, Jaroszewicz S. Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems (in Press)
47 Moody G, Mark R, Bump M A, Weinstein J S, Berman A D, Mietus J, Goldberger A. Clinical validation of the ECG derived respiration (EDR) technique. In: Proceedings of Computers in Cardiology . 1986, 507-510
48 Ahlberg J, Nilson E, Walsh J. The Theory of Splines and Their Applications. New York: Academic Press, 1967
doi: 10.1046/j.1440-1819.1999.00527.x
49 Ichimaru Y, Moody G. Development of the polysomnographic database on CD-ROM. Psychiatry and Clinical Neurosciences , 1999, 53(2): 175-177
[1] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
[2] Zhiyong YU, Xiangping ZHENG, Fangwan HUANG, Wenzhong GUO, Lin SUN, Zhiwen YU. A framework based on sparse representation model for time series prediction in smart city[J]. Front. Comput. Sci., 2021, 15(1): 151305-.
[3] Wen LIU, Tuqian ZHANG, Yanming SHEN, Peng WANG. Fast correlation coefficient estimation algorithm for HBase-based massive time series data[J]. Front. Comput. Sci., 2019, 13(4): 864-878.
[4] Yaru XIAN, Jun XIAO, Ying WANG. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Front. Comput. Sci., 2019, 13(1): 170-182.
[5] Maoguo GONG, Xiangming JIANG, Hao LI. Optimization methods for regularization-based ill-posed problems: a survey and a multi-objective framework[J]. Front. Comput. Sci., 2017, 11(3): 362-391.
[6] Wei SHAO,Yi DING,Hong-Bin SHEN,Daoqiang ZHANG. Deep model-based feature extraction for predicting protein subcellular localizations from bio-images[J]. Front. Comput. Sci., 2017, 11(2): 243-252.
[7] Yi ZHENG,Qi LIU,Enhong CHEN,Yong GE,J. Leon ZHAO. Exploiting multi-channels deep convolutional neural networks for multivariate time series classification[J]. Front. Comput. Sci., 2016, 10(1): 96-112.
[8] Hongbo NI,Shu WU,Bessam ABDULRAZAK,Daqing ZHANG,Xiaojuan MA,Xingshe ZHOU. Non-intrusive sleep pattern recognition with ubiquitous sensing in elderly assistive environment[J]. Front. Comput. Sci., 2015, 9(6): 966-979.
[9] Fengying XIE,Yefen WU,Yang LI,Zhiguo JIANG,Rusong MENG. Adaptive segmentation based on multi-classification model for dermoscopy images[J]. Front. Comput. Sci., 2015, 9(5): 720-728.
[10] Zhisong PAN,Zhantao DENG,Yibing WANG,Yanyan ZHANG. Dimensionality reduction via kernel sparse representation[J]. Front. Comput. Sci., 2014, 8(5): 807-815.
[11] Yin LU,Fuxiang WANG,Xiaoyan LUO,Feng LIU. Novel infrared and visible image fusion method based on independent component analysis[J]. Front. Comput. Sci., 2014, 8(2): 243-254.
[12] R PRIYA, T. N SHANMUGAM. A comprehensive review of significant researches on content based indexing and retrieval of visual information[J]. Front Comput Sci, 2013, 7(5): 782-799.
[13] Ling LIU. Computing infrastructure for big data processing[J]. Front Comput Sci, 2013, 7(2): 165-170.
[14] Yongjian ZHAO, Hong HE, Jianxun Mi. Noisy component extraction with reference[J]. Front Comput Sci, 2013, 7(1): 135-144.
[15] Jing WANG, Zhijing LIU, Hui ZHAO. A probabilistic model with multi-dimensional features for object extraction[J]. Front Comput Sci, 2012, 6(5): 513-526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed