Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2015, Vol. 9 Issue (5) : 720-728    https://doi.org/10.1007/s11704-015-4391-8
RESEARCH ARTICLE
Adaptive segmentation based on multi-classification model for dermoscopy images
Fengying XIE1,*(),Yefen WU1,Yang LI1,Zhiguo JIANG1,Rusong MENG2
1. Image Processing Center, School of Astronautics, Beihang University, Beijing 100191, China
2. General Hospital of the Air Force, People’s Liberation Army, Beijing 100036, China
 Download: PDF(663 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Segmentation accuracy of dermoscopy images is important in the computer-aided diagnosis of skin cancer and a wide variety of segmentation methods for dermoscopy images have been developed. Considering that each method has its strengths and weaknesses, a novel adaptive segmentation framework based on multi-classification model is proposed for dermoscopy images. Firstly, five patterns of images are summarized according to the factors influencing segmentation. Then the matching relation is established between each image pattern and its optimal segmentationmethod. Next, the given image is classified into one of the five patterns by the multi-classification model based on BP neural network. Finally, the optimal segmentation method for this image is selected according to the matching relation, and then the image is effectively segmented. Experiments show that the proposed method delivers better accuracy and more robust segmentation results compared with the other seven state-of-the-art methods.

Keywords adaptive segmentation      feature extraction      pattern classification      dermoscopy image     
Corresponding Author(s): Fengying XIE   
Just Accepted Date: 04 February 2015   Issue Date: 24 September 2015
 Cite this article:   
Fengying XIE,Yefen WU,Yang LI, et al. Adaptive segmentation based on multi-classification model for dermoscopy images[J]. Front. Comput. Sci., 2015, 9(5): 720-728.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-015-4391-8
https://academic.hep.com.cn/fcs/EN/Y2015/V9/I5/720
1 Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: a Cancer Journal for Clinicians, 2014, 64(1): 9―29
https://doi.org/10.3322/caac.21208
2 Di Leo G, Liguori C, Paolillo A, Sommella P. An improved procedure for the automatic detection of dermoscopy structures in digital ELMimages of skin lesions. In: Proceedings of the IEEE International Conference on Virtual Environment, Human-Computer Interfaces, and Measurement Systems. 2008, 190―194
3 Soyer H P, Smolle J, Kerl H, Stettnre H. Early diagnosis of malignant melanoma by surface microscopy. The Lancet, 1987, 330(8562): 803
https://doi.org/10.1016/S0140-6736(87)92540-2
4 Korotkov K, Garcia R. Computerized analysis of pigmented skin lesions: a review. Artificial Intelligence in Medicine, 2012, 56(2): 69―90
https://doi.org/10.1016/j.artmed.2012.08.002
5 Celebi M E, Iyatomi H, Schaefer G, Stoecker W V. Lesion border detection in dermoscopy images. Computerized Medical Imaging and Graphics, 2009, 33(2): 148―153
https://doi.org/10.1016/j.compmedimag.2008.11.002
6 Grana C, Pellacani G, Cucchiara R, Seidenari S. A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions. IEEE Transactions on Medical Imaging, 2003, 22(8): 959―964
https://doi.org/10.1109/TMI.2003.815901
7 Silveira M, Nascimento J C, Marques J S, Marcal A R S, Mendonca T, Yarauchi S, Maeda J, Rozeira J. Comparison of segmentation methods for melanoma diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(1): 35―45
https://doi.org/10.1109/JSTSP.2008.2011119
8 Xu C, Prince J. Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Process, 1998, 7(3): 359―369
https://doi.org/10.1109/83.661186
9 Nascimento J, Marques J S. Adaptive snakes using the EM algorithm. IEEE Transactions on Image Process, 2005, 14: 1678―1686
https://doi.org/10.1109/TIP.2005.857252
10 Chan T, Sandberg B, Vese L. Active contours without edges for vectorvalued images. Journal of Visual Communication and Image Representation, 2000, 11(2): 130―141
https://doi.org/10.1006/jvci.1999.0442
11 McLachlan G, Krishnan T. The EM Algorithm and Extensions. New York: John Wiley and Sons, 2007
12 Maeda J, Kawano A, Saga S, Suzuki Y. Number-driven perceptual segmentation of natural color images for easy decision of optimal result. In: Proceedings of the IEEE international Conference on Image Processing. 2007, 2: 265―268
https://doi.org/10.1109/icip.2007.4379143
13 Celebi M E, Aslandogan Y A, Stoecker W V, Iyatomi H, Dka H, Chen X H. Unsupervised border detection in dermoscopy images. Skin Research and Technology, 2007, 13(4): 454―462
https://doi.org/10.1111/j.1600-0846.2007.00251.x
14 Celebi ME, Kingravi H A, Iyatomi H, Aslandogan Y A, Stoecker WV, Moss R H, Matters JM, Grichnik JM, Marghoob A A, Rabinovitz H S, Menzies S W. Border detection in dermoscopy images using statistical region merging. Skin Research and Technology, 2008, 14(3): 347―353
https://doi.org/10.1111/j.1600-0846.2008.00301.x
15 Melli R, Grana C, Cucchiara R. Comparison of color clustering algorithms for segmentation of dermatological images. Medical Imaging. International Society for Optics and Photonics, 2006, 9: 61443S
16 He Y, Xie F. Automatic skin lesion segmentation based on texture analysis and supervised learning. Lecture Notes in Computer Science, 2013, 7725: 330―341
https://doi.org/10.1007/978-3-642-37444-9_26
17 Wu Y, Xie F, Jiang Z, Meng R. Automatic skin lesion segmentation based on supervised learning. In: Proceedings of the 7th International Conference on Image and Graphics. 2013, 164―169
https://doi.org/10.1109/icig.2013.39
18 Fukunaga K, Hostetler L. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory, 1975, 21(1): 32―40
https://doi.org/10.1109/TIT.1975.1055330
19 Xie F, Bovik A C. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm. Pattern Recognition, 2013, 46(3): 1012―1019
https://doi.org/10.1016/j.patcog.2012.08.012
20 Motoyarna H, Tanaka T, Tanka M, Oka H. Feature of malignant melanoma based on color information. In: Proceedings of SICE Annual Conference. 2004, 1: 230―233
21 Alman D H, Berns R S, Snyder G D, Larsen W A. Performance testing of color-difference metrics using a color tolerance dataset. Color Research and Application, 1989, 14(3): 139―151
https://doi.org/10.1002/col.5080140308
22 Moroney N, Fairchild M, Hunt R, Li C, Luo M R, Newman T. The CIECAM02 color appearance model. Society for Imaging Science and Technology, 2002
23 Freeman W T, Adelsonk E H. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891―906
https://doi.org/10.1109/34.93808
24 Simoncelli E P, Freeman W T, Adeslon E H, Heeger D J. Shiftable multi-scale transforms. IEEE Transactions on Information Theory, 1992, 38(2): 587―607
https://doi.org/10.1109/18.119725
25 Abbas Q, Celebi M E, Serrano C, García I F, Ma G. Pattern classification of dermoscopy images: a perceptually uniform model. Pattern Recognition, 2013, 46(1): 86―97
https://doi.org/10.1016/j.patcog.2012.07.027
26 Xie F, Qin S, Jiang Z, Meng R. PDE-based unsupervised repair of hairoccluded information in dermoscopy images of melanoma. Computerized Medical Imaging and Graphics, 2009, 33(4): 275―282
https://doi.org/10.1016/j.compmedimag.2009.01.003
27 Stehman S V. Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, 1997, 62(1): 77―89
https://doi.org/10.1016/S0034-4257(97)00083-7
28 Mitchell T. Machine Learning. The MIT Press, 1997
29 Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters, 1999, 9(3): 293―300
https://doi.org/10.1023/A:1018628609742
[1] Supplementary Material-Highlights in 3-page ppt
Download
[1] Xia-an BI, Yiming XIE, Hao WU, Luyun XU. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm[J]. Front. Comput. Sci., 2021, 15(6): 156903-.
[2] Yaru XIAN, Jun XIAO, Ying WANG. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Front. Comput. Sci., 2019, 13(1): 170-182.
[3] Wei SHAO,Yi DING,Hong-Bin SHEN,Daoqiang ZHANG. Deep model-based feature extraction for predicting protein subcellular localizations from bio-images[J]. Front. Comput. Sci., 2017, 11(2): 243-252.
[4] Zhisong PAN,Zhantao DENG,Yibing WANG,Yanyan ZHANG. Dimensionality reduction via kernel sparse representation[J]. Front. Comput. Sci., 2014, 8(5): 807-815.
[5] Yin LU,Fuxiang WANG,Xiaoyan LUO,Feng LIU. Novel infrared and visible image fusion method based on independent component analysis[J]. Front. Comput. Sci., 2014, 8(2): 243-254.
[6] R PRIYA, T. N SHANMUGAM. A comprehensive review of significant researches on content based indexing and retrieval of visual information[J]. Front Comput Sci, 2013, 7(5): 782-799.
[7] Jing WANG, Zhijing LIU, Hui ZHAO. A probabilistic model with multi-dimensional features for object extraction[J]. Front Comput Sci, 2012, 6(5): 513-526.
[8] Tim SCHLüTER, Stefan CONRAD. An approach for automatic sleep stage scoring and apnea-hypopnea detection[J]. Front Comput Sci, 2012, 6(2): 230-241.
[9] YANG Jian, YANG Jingyu, ZHANG David. Median Fisher Discriminator: a robust feature extraction method with applications to biometrics[J]. Front. Comput. Sci., 2008, 2(3): 295-305.
[10] DAI Ruwei, XIAO Baihua, LIU Chenglin. Chinese character recognition: history, status and prospects[J]. Front. Comput. Sci., 2007, 1(2): 126-136.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed