Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2013, Vol. 7 Issue (5) : 767-781    https://doi.org/10.1007/s11704-013-3073-7
RESEARCH ARTICLE
Local feature based retrieval approach for iris biometrics
Hunny MEHROTRA(), Banshidhar MAJHI
Department of Computer Science and Engineering, National Institute of Technology, Rourkela 769008, India
 Download: PDF(0 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposes an efficient retrieval approach for iris using local features. The features are extracted from segmented iris image using scale invariant feature transform (SIFT). The keypoint descriptors extracted from SIFT are clustered into m groups using k-means. The idea is to perform indexing of keypoints based on descriptor property. During database indexing phase, k-d tree k-dimensional tree is constructed for each cluster center taken from N iris images. Thus for m clusters, m such k-d trees are generated denoted as ti, where 1≤i m. During the retrieval phase, the keypoint descriptors from probe iris image are clustered into m groups and ith cluster center is used to traverse corresponding ti for searching. k nearest neighbor approach is used, which finds p neighbors from each tree (ti) that falls within certain radius r centered on the probe point in k-dimensional space. Finally, p neighbors from m trees are combined using union operation and top S matches (S ⊆ (m× p)) corresponding to query iris image are retrieved. The proposed approach has been tested on publicly available databases and outperforms the existing approaches in terms of speed and accuracy.

Keywords Indexing      SIFT      k-means      k-d tree      k nearest neighbors      iris      biometrics     
Corresponding Author(s): Hunny MEHROTRA   
Issue Date: 01 October 2013
 Cite this article:   
Hunny MEHROTRA,Banshidhar MAJHI. Local feature based retrieval approach for iris biometrics[J]. Front. Comput. Sci., 2013, 7(5): 767-781.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-013-3073-7
https://academic.hep.com.cn/fcs/EN/Y2013/V7/I5/767
1 J Daugman . The importance of being random: statistical principles of iris recognition. Pattern Recognition, 2003, 36(2): 279−291
https://doi.org/10.1016/S0031-3203(02)00030-4
2 J Daugman . How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(1): 21−30
https://doi.org/10.1109/TCSVT.2003.818350
3 S Z Li , A K Jain , eds. . Encyclopedia of Biometrics. Springer US, 2009
https://doi.org/10.1007/978-0-387-73003-5
4 . Unique Identification Authority of India.
5 Iris Recognition Immigration System (IRIS).
6 A Mhatre , S Chikkerur , V Govindaraju . Indexing biometric databases using pyramid technique. In: Proceedings of the 5th International Conference on Audio-and Video-Based Biometric Person Authentication. 2005, 841−849
https://doi.org/10.1007/11527923_88
7 L Yu , D Zhang , K Wang , W Yang . Coarse iris classification using boxcounting to estimate fractal dimensions. Pattern Recognition, 2005, 38(11): 1791−1798
https://doi.org/10.1016/j.patcog.2005.03.015
8 X Qiu , Z Sun , T Tan . Global texture analysis of iris images for ethnic classification. In: Advances in Biometrics. 2005, 411−418
9 X Qiu , Z Sun , T Tan . Coarse iris classification by learned visual dictionary. In: Proceedings of the 2007 International Conference on Advances in Biometrics. 2007, 770−779
10 A Gyaourova , A Ross . Index codes for multibiometric pattern retrieval. IEEE Transactions on Information Forensics and Security, 2012, 7(2): 518−529
https://doi.org/10.1109/TIFS.2011.2172429
11 A Mhatre , S Palla , S Chikkerur , V Govindaraju . Efficient search and retrieval in biometric databases. In: Proceedings of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. 2005, 265−273
12 U Jayaraman , S Prakash , P Gupta . Indexing multimodal biometric databases using Kd-tree with feature level fusion. In: Proceedings of the 4th International Conference on Information Systems Security. 2008, 221−234
https://doi.org/10.1007/978-3-540-89862-7_19
13 U Jayaraman , S Prakash , P Gupta . Use of geometric features of prince pal components for indexing a biometric database. Mathematical and Computer Modelling, 2012 (in press)
14 A Munoz-Briseno , A Gago-Alonso , J Hernandez-Palancar . . Fingerprint indexing with bad quality areas. Expert Systems with Applications, 2013, 40(5): 1839−1846
https://doi.org/10.1016/j.eswa.2012.09.018
15 H Feng , J Daugman , P Zielinski . A fast search algorithm for a large fuzzy database. IEEE Transactions on Information Forensics and Security, 2008, 3(2): 203−212
https://doi.org/10.1109/TIFS.2008.920726
16 R Mukherjee , A Ross . Indexing iris images. In: Proceedings of the 19th International Conference on Pattern Recognition. 2008, 1−4
17 N Puhan , N Sudha . A novel iris database indexing method using the iris color. In: Proceedings of the 3rd IEEE Conference on Industrial Electronics and Applications. 2008, 1886−1891
18 H Mehrotra , B Srinivas , B Majhi , P Gupta . Indexing iris biometric database using energy histogram of DCT subbands. In: Proceedings of the 2009 International Conference on Contemporary Computing. 2009, 194−204
19 R Gadde , D Adjeroh , Ross A. Indexing iris images using the Burrows-Wheeler Transform. In: Proceedings of the 2010 IEEE International Workshop on Information Forensics and Security. 2010, 1−6
https://doi.org/10.1109/WIFS.2010.5711467
20 C Rathgeb , l A Uh. Iris-biometric hash generation for biometric database indexing. In: Proceedings of the 2010 International Conference on Pattern Recognition. 2010, 2848−2851
https://doi.org/10.1109/ICPR.2010.698
21 S Dey , D Samanta . Iris data indexing method using gabor energy features. IEEE Transactions on Information Forensics and Security, 2012, 7(4): 1192−1203
https://doi.org/10.1109/TIFS.2012.2196515
22 H Mehrotra , B Majhi , P Gupta . Robust iris indexing scheme using geometric hashing of SIFT keypoints. Journal of Network and Computer Applications, 2010, 33(3): 300−313
https://doi.org/10.1016/j.jnca.2009.12.005
23 H Wolfson , I Rigoutsos . Geometric hashing: an overview. IEEE Computational Science Engineering, 1997, 4(4): 10−21
https://doi.org/10.1109/99.641604
24 D Lowe . Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91−110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
25 U Jayaraman , S Prakash , P Gupta . . An efficient color and texture based iris image retrieval technique. Expert Systems with Applications, 2012, 39(5): 4915−4926
https://doi.org/10.1016/j.eswa.2011.10.025
26 H Bay , A Ess , T Tuytelaars , . Van Gool L. Speeded-up robust features (SURF). Computer Vision and Image Understanding, 2008, 110(3): 346−359
https://doi.org/10.1016/j.cviu.2007.09.014
27 K Bowyer , K Hollingsworth , P Flynn . Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 2008, 110: 281−307
https://doi.org/10.1016/j.cviu.2007.08.005
28 H Proenca , L Alexandre . Iris recognition: An analysis of the aliasing problem in the iris normalization stage. In: Proceedings of the 2006 International Conference on Computational Intelligence and Security. 2006, 1771−1774
https://doi.org/10.1109/ICCIAS.2006.295366
29 A Panda , H Mehrotra , B Majhi . Parallel geometric hashing for robust iris indexing. Journal of Real-Time Image Processing, 2011, 1−9
30 S Bakshi , H Mehrotra , B Majhi . Real-time iris segmentation based on image morphology. In: Proceedings of the 2011 International Conference on Communication, Computing & Security. 2011, 335−338
31 J Bentley . Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975, 18(9): 509−517
https://doi.org/10.1145/361002.361007
32 J H Friedman , J L Bentley , R A Finkel . An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 1977, 3: 209−226
https://doi.org/10.1145/355744.355745
33 M Blum , R Floyd , V Pratt , R Rivest , R Tarjan . Time bounds for selection. Journal of Computer and System Sciences, 1973, 7(4): 448−461
https://doi.org/10.1016/S0022-0000(73)80033-9
34 BATH University Database.
35 CASIA Database.
36 A Jain , P Flynn , A A Ross . Handbook of Biometrics. Springer-Verlag New York, Inc., 2007
37 J L Wayman . Error rate equations for the general biometric system. IEEE Robotics and Automation Magazine, 1999, 6(1): 35−48
https://doi.org/10.1109/100.755813
[1] Hongbin XU, Weili YANG, Qiuxia WU, Wenxiong KANG. Endowing rotation invariance for 3D finger shape and vein verification[J]. Front. Comput. Sci., 2022, 16(5): 165332-.
[2] Ling SHEN, Richang HONG, Yanbin HAO. Advance on large scale near-duplicate video retrieval[J]. Front. Comput. Sci., 2020, 14(5): 145702-.
[3] Kun SU, Gongping YANG, Lu YANG, Peng SU, Yilong YIN. Non-negative locality-constrained vocabulary tree for finger vein image retrieval[J]. Front. Comput. Sci., 2019, 13(2): 318-332.
[4] Xiaoye MIAO, Yunjun GAO, Su GUO, Wanqi LIU. Incomplete data management: a survey[J]. Front. Comput. Sci., 2018, 12(1): 4-25.
[5] Yue WANG,Hongzhi WANG,Jianzhong LI,Hong GAO. Efficient graph similarity join for information integration on graphs[J]. Front. Comput. Sci., 2016, 10(2): 317-329.
[6] Peng JIANG,Qiaoyan WEN,Wenmin LI,Zhengping JIN,Hua ZHANG. An anonymous and efficient remote biometrics user authentication scheme in a multi server environment[J]. Front. Comput. Sci., 2015, 9(1): 142-156.
[7] R PRIYA, T. N SHANMUGAM. A comprehensive review of significant researches on content based indexing and retrieval of visual information[J]. Front Comput Sci, 2013, 7(5): 782-799.
[8] Tang Yuanyan. Status of pattern recognition with wavelet analysis[J]. Front. Comput. Sci., 2008, 2(3): 268-294.
[9] XU Jianliang, TANG Xueyan, LEE Wang-Chien. Distributed query processing in flash-based sensor networks[J]. Front. Comput. Sci., 2008, 2(3): 248-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed