|
|
Advance on large scale near-duplicate video retrieval |
Ling SHEN1, Richang HONG1( ), Yanbin HAO1,2 |
1. 1School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China 2. 2Department of Computer Science, City University of Hong Kong, Hong Kong 999077, China |
|
|
Abstract Emerging Internet services and applications attract increasing users to involve in diverse video-related activities, such as video searching, video downloading, video sharing and so on. As normal operations, they lead to an explosive growth of online video volume, and inevitably give rise to the massive near-duplicate contents. Near-duplicate video retrieval (NDVR) has always been a hot topic. The primary purpose of this paper is to present a comprehensive survey and an updated reviewof the advance on large-scaleNDVR to supply guidance for researchers. Specifically, we summarize and compare the definitions of near-duplicate videos (NDVs) in the literature, analyze the relationship between NDVR and its related research topics theoretically, describe its generic framework in detail, investigate the existing state-of-the-art NDVR systems. Finally, we present the development trends and research directions of this topic.
|
Keywords
near-duplicate videos
video retrieval
featurerepresentation
video signature
indexing
similarity measurement
|
Corresponding Author(s):
Richang HONG
|
Just Accepted Date: 23 August 2019
Issue Date: 10 March 2020
|
|
1 |
N Khan, I Yaqoob, I A T Hashem, Z Inayat, W K M Ali, M Alam, M Shiraz, A Gani. Big data: survey, technologies, opportunities, and challenges. The Scientific World Journal, 2014, 2014: 712826
https://doi.org/10.1155/2014/712826
|
2 |
X Wu, A G Hauptmann, C W Ngo. Practical elimination of nearduplicates from web video search. In: Proceedings of the 15th ACM International Conference on Multimedia. 2007, 218–227
https://doi.org/10.1145/1291233.1291280
|
3 |
J Davidson, B Liebald, J Liu, P Nandy, T V Vleet. The youtube video recommendation system. In: Proceedings of the 4th ACM Conference on Recommender Systems. 2010, 293–296
https://doi.org/10.1145/1864708.1864770
|
4 |
B Yang, T Mei, X S Hua, L Yang, S Q Yang, M J Li. Online video recommendation based on multimodal fusion and relevance feedback. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 73–80
https://doi.org/10.1145/1282280.1282290
|
5 |
E Koch, J Rindfre, J Zhao. Copyright protection for multimedia data. In: Proceedings of the International Conference on Digital Media and Electronic Publishing. 1994
|
6 |
X Zhou, L Chen . Monitoring near duplicates over video streams. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 521–530
https://doi.org/10.1145/1873951.1874020
|
7 |
J J Tamilselvi, C B Gifta. Handling duplicate data in data warehouse for data mining. International Journal of Computer Applications, 2011, 15(4): 7–15
https://doi.org/10.5120/1939-2590
|
8 |
M S Chen, J Han, P S Yu. Data mining: an overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 2002, 8(6): 866–883
https://doi.org/10.1109/69.553155
|
9 |
X Wu, I Ide, S Satoh. News topic tracking and re-ranking with query expansion based on near-duplicate detection. In: Proceedings of Pacific-Rim Conference on Multimedia. 2009, 755–766
https://doi.org/10.1007/978-3-642-10467-1_66
|
10 |
H T Shen, X Zhou, Z Huang, J Shao, X Zhou. UQLIPS: a realtime near-duplicate video clip detection system. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 1374–1377
|
11 |
J Liu, Z Huang, H Cai, H T Shen, C W Ngo, g W Wan. Near-duplicate video retrieval: current research and future trends. ACM Computing Surveys, 2013, 45(4): 44
https://doi.org/10.1145/2501654.2501658
|
12 |
M Cherubini, R D Oliveira, N Oliver. Understanding near-duplicate videos: a user-centric approach. In: Proceedings of the 17th ACM International Conference on Multimedia. 2009, 35–44
https://doi.org/10.1145/1631272.1631280
|
13 |
C L Chou, H T Chen, S Y Lee. Pattern-based near-duplicate video retrieval and localization on web-scale videos. IEEE Transactions on Multimedia, 2015, 17(3): 382–395
https://doi.org/10.1109/TMM.2015.2391674
|
14 |
J R Zhang, J Y Ren, F Chang, T L Wood, J R Kender. Fast nearduplicate video retrieval via motion time series matching. In: Proceedings of the IEEE International Conference on Multimedia and Expo. 2012, 842–847
https://doi.org/10.1109/ICME.2012.111
|
15 |
A Basharat, Y Zhai, M Shah. Content based video matching using spatiotemporal volumes. Computer Vision and Image Understanding, 2008, 110(3): 360–377
https://doi.org/10.1016/j.cviu.2007.09.016
|
16 |
A W M Smeulders, M Worring, S Santini, A Gupta, R Jain. Contentbased image retrieval at the end of the early. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(12): 1349–1380
https://doi.org/10.1109/34.895972
|
17 |
Y Yan, B C Ooi, A Zhou. Continuous content-based copy detection over streaming videos. In: Proceedings of the 24th IEEE International Conference on Data Engineering. 2008, 853–862
https://doi.org/10.1109/ICDE.2008.4497494
|
18 |
L Mou, T Huang, Y Tian, M Jiang, W Gao. Content-based copy detection through multimodal feature representation and temporal pyramid matching. ACM Transactions on Multimedia Computing Communications and Applications, 2013, 10(1): 1–20
https://doi.org/10.1145/2542205.2542208
|
19 |
R Hong, Y Yang, M Wang, X S Hua. Learning visual semantic relationships for efficient visual retrieval. IEEE Transactions on Big Data, 2017, 1(4): 152–161
https://doi.org/10.1109/TBDATA.2016.2515640
|
20 |
M S G Saravanan, M T Sivaprakasam, D Somasundaram. A review on content based video retrieval, classification and summarization. Asian Journal of Applied Science and Technology, 2017, 1(9): 40–45
|
21 |
Q Xie, Z Huang, H T Shen, X Zhou, C Pang. Efficient and continuous near-duplicate video detection. In: Proceedings of the 12th International Asia-Pacific Web Conference. 2010, 260–266
https://doi.org/10.1109/APWeb.2010.72
|
22 |
X Nie, Y Chai, J Liu, J Sun, Y Yin. Spherical torus-based video hashing for near-duplicate video detection. Science China Information Sciences, 2016, 59(5): 059101
https://doi.org/10.1007/s11432-016-5528-6
|
23 |
H B da Silva, Z K do Patrocínio, G Gravier, L Amsaleg, A D A Araújo, S J F Guimaraes. Near-duplicate video detection based on an approximate similarity self-join strategy. In: Proceedings of the 14th International Workshop on Content-Based Multimedia Indexing. 2016, 1–6
https://doi.org/10.1109/CBMI.2016.7500278
|
24 |
S Lameri, L Bondi, P Bestagini, S Tubaro. Near-duplicate video detection exploiting noise residual traces. In: Proceedings of the IEEE International Conference on Image Processing. 2017, 1497–1501
https://doi.org/10.1109/ICIP.2017.8296531
|
25 |
K Washino, B H Schwab. Video monitoring and conferencing system. U.S. Patent No. 5,625,410. 1997-4-29
|
26 |
J Jiang, Y Tong, H Lu, B Cui, K Lei, L Yu. GVoS: a general system for near-duplicate video-related applications on storm. ACM Transactions on Information Systems, 2017, 36(1): 3
https://doi.org/10.1145/3041657
|
27 |
Z Huang, L Wang, H T Shen, J Shao, X Zhou. Online near-duplicate video clip detection and retrieval: an accurate and fast system. In: Proceedings of the 25th IEEE International Conference on Data Engineering. 2009, 1511–1514
https://doi.org/10.1109/ICDE.2009.17
|
28 |
W Kraaij, G Awad. TRECVID 2011 content-based copy detection: task overview. Online Proceedings of TRECVid, 2011
|
29 |
G Awad, J Fiscus, W Kraaij. TRECVID 2011–an overview of the goals, tasks, data, evaluation mechanisms, and metrics. National Institute of Standards and Technology, 2014, 1–58
https://doi.org/10.1145/2629531
|
30 |
A F Smeaton, P Over, W Kraaij. Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. 2006, 321–330
https://doi.org/10.1145/1178677.1178722
|
31 |
J Law-To, L Chen, A Joly, I Laptev, O Buisson, V Gouet-Brunet, N Boujemaa, F Stentiford. Video copy detection: a comparative study. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 371–378
https://doi.org/10.1145/1282280.1282336
|
32 |
A Hampapur, R M Bolle. Comparison of sequence matching techniques for video copy detection. In: Proceedings of SPIE Storage and Retrieval for Media Databases. 2002, 194–202
|
33 |
J Zobel, T C Hoad. Detection of video sequences using compact signatures. ACM Transactions on Information Systems, 2006, 24(1): 1–50
https://doi.org/10.1145/1125857.1125858
|
34 |
A Joly, O Buisson , C Frelicot. Content-based copy retrieval using distortion-based probabilistic similarity search. IEEE Transactions on Multimedia, 2007, 9(2): 293–306
https://doi.org/10.1109/TMM.2006.886278
|
35 |
M C Yeh, K T Cheng. Video copy detection by fast sequence matching. In: Proceedings of the ACM International Conference on Image and Video Retrieval. 2009, 45
https://doi.org/10.1145/1646396.1646449
|
36 |
W Kraaij, G Awad, P Over. TRECVID-2008 content-based copy detection task overview (slides). National Institute of Standards and Technology, 2008
|
37 |
P Aigrain, H Zhang, D Petkovic. Content-based representation and retrieval of visual media: a state-of-the-art review. Multimedia Tools and Applications, 1996, 3(3): 179–202
https://doi.org/10.1007/BF00393937
|
38 |
W Hu, N Xie, L Li, S Maybank. A survey on visual content-based video indexing and retrieval. IEEE Transactions on Systems Man and Cybernetics, Part C, 2011, 41(6): 797–819
https://doi.org/10.1109/TSMCC.2011.2109710
|
39 |
R Hong, J Tang, H K Tan, C W Ngo, S Yan, T S Chua. Beyond search: event-driven summarization for web videos. ACM Transactions on Multimedia Computing Communications and Applications, 2011, 7(4): 35
https://doi.org/10.1145/2043612.2043613
|
40 |
T S Chua, R Hong, G Li, J Tang. From text question-answering to multimedia QA on web-scale media resources. In: Proceedings of the 1st ACM Workshop on Large-Scale Multimedia Retrieval and Mining. 2009, 51–58
https://doi.org/10.1145/1631058.1631069
|
41 |
W L Zhao, C W Ngo, H K Tan, X Wu. Near-duplicate keyframe identification with interest point matching and pattern learning. IEEE Transactions on Multimedia, 2007, 9(5): 1037–1048
https://doi.org/10.1109/TMM.2007.898928
|
42 |
X Wu, W L Zhao, C W Ngo. Near-duplicate keyframe retrieval with visual keywords and semantic context. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval. 2007, 162–169
https://doi.org/10.1145/1282280.1282309
|
43 |
P Geetha, V Narayanan. A survey of content-based video retrieval. Journal of Computer Science, 2008, 4(6): 734
https://doi.org/10.3844/jcssp.2008.474.486
|
44 |
X Wu, W L Zhao, C W Ngo. Efficient near-duplicate keyframe retrieval with visual language models. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2007, 500–503
https://doi.org/10.1109/ICME.2007.4284696
|
45 |
C Yeo, Y W Zhu, Q Sun, S F Chang. A framework for sub-window shot detection. In: Proceedings of the 11th International Multimedia Modelling Conference. 2005, 84–91
|
46 |
S Satoh, M Takimoto, J Adachi. Scene duplicate detection from videos based on trajectories of feature points. In: Proceedings of the International Workshop on Multimedia Information Retrieval. 2007, 237–244
https://doi.org/10.1145/1290082.1290115
|
47 |
R Hong, M Wang, M Xu, S Yan, T S Chua. Dynamic captioning: video accessibility enhancement for hearing impairment. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 421–430
https://doi.org/10.1145/1873951.1874013
|
48 |
M Wang, R Hong, X T Yuan, S Yan, T S Chua. Movie2Comics: towards a lively video content presentation. IEEE Transactions on Multimedia, 2012, 14(3): 858–870
https://doi.org/10.1109/TMM.2012.2187181
|
49 |
S T Birchfield, S Rangarajan. Spatiograms versus histograms for region-based tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2005, 1158–1163
|
50 |
J Li, W Wu, T Wang, Y Zhang. One step beyond histograms: image representation using Markov stationary features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2008, 1–8
|
51 |
L Shang, K P Chan, X S Hua. Real-time large scale near-duplicate web video retrieval. In: Proceedings of the 18th ACM International Conference on Multimedia. 2010, 531–540
https://doi.org/10.1145/1873951.1874021
|
52 |
J Song, Y Yang, Z Huang, H T Shen, J Luo. Effective multiple feature hashing for large-scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2013, 15(8): 1997–2008
https://doi.org/10.1109/TMM.2013.2271746
|
53 |
M J Swain, D H Ballard. Color indexing. International Journal of Computer Vision, 1991, 7(1): 11–32
https://doi.org/10.1007/BF00130487
|
54 |
D N Bhat, S K Nayar. Ordinal measures for image correspondence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(4): 415–423
https://doi.org/10.1109/34.677275
|
55 |
W Dong, Z Wang, M Charikar, K Li. Efficiently matching sets of features with random histograms. In: Proceedings of the 16th ACM International Conference on Multimedia. 2008, 179–188
https://doi.org/10.1145/1459359.1459384
|
56 |
Y Ke, R Sukthankar. PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004, 506–513
|
57 |
Y Ke, R Sukthankar, L Huston. Efficient near-duplicate detection and sub-image retrieval. In: Proceedings of ACM International Conference on Multimedia. 2004
https://doi.org/10.1145/1027527.1027729
|
58 |
D G Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91–110
https://doi.org/10.1023/B:VISI.0000029664.99615.94
|
59 |
D G Lowe. Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision. 1999, 1150–1157
https://doi.org/10.1109/ICCV.1999.790410
|
60 |
H Bay, T Tuytelaars, L Van Gool. SURF: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417
https://doi.org/10.1007/11744023_32
|
61 |
G Yang, N Chen, Q Jiang. A robust hashing algorithm based on SURF for video copy detection. Computers and Security, 2012, 31(1): 33–39
https://doi.org/10.1016/j.cose.2011.11.004
|
62 |
Y Hao, T Mu, R Hong, M Wang, N An, J Y Goulermas. Stochastic multiview hashing for large-scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2017, 19(1): 1–14
https://doi.org/10.1109/TMM.2016.2610324
|
63 |
G Zhao, M Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(6): 915–928
https://doi.org/10.1109/TPAMI.2007.1110
|
64 |
Y, Hao T Mu, J Y Goulermas, J Jiang, R Hong, M Wang. Unsupervised t-distributed video hashing and its deep hashing extension. IEEE Transactions on Image Processing, 2017, 26(11): 5531–5544
https://doi.org/10.1109/TIP.2017.2737329
|
65 |
O Chum, J Philbin , A Zisserman. Near duplicate image detection: min-hash and TF-IDF weighting. In: Proceedings of the British Machine Vision Conference. 2008, 812–815
https://doi.org/10.5244/C.22.50
|
66 |
W Jing, X Nie, C Cui, X Xi, G Yang, Y Yin. Global-view hashing: harnessing global relations in near-duplicate video retrieval. World Wide Web, 2019, 22(2): 771–789
https://doi.org/10.1007/s11280-018-0536-7
|
67 |
X Nie, X Li, J Sun, Y Yin. UFvH: unified feature video hashing for near-duplicate video retrieval. In: Proceedings of the Workshop on Visual Analysis in Smart and Connected Communities. 2017, 17–24
https://doi.org/10.1145/3132734.3132738
|
68 |
J Law-To, O Buisson, V Gouet-Brunet , N Boujemaa. Robust voting algorithm based on labels of behavior for video copy detection. In: Proceedings of the 14th ACM International Conference on Multimedia. 2006, 835–844
https://doi.org/10.1145/1180639.1180826
|
69 |
J R Zhang, J Y Ren, F Chang, T L Wood, J R Kender. Fast nearduplicate video retrieval via motion time series matching. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2012, 842–847
https://doi.org/10.1109/ICME.2012.111
|
70 |
C L Chou, H T Chen, Y C Chen, C P Ho, S Y Lee. Near-duplicate video retrieval and localization using pattern set based dynamic programming. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2013, 1–6
|
71 |
X S Hua, X Chen, H J Zhang. Robust video signature based on ordinal measure. In: Proceedings of International Conference on Image Processing. 2004, 685–688
|
72 |
A Krizhevsky, I Sutskever, G E Hinton. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. 2012, 1097–1105
|
73 |
A S Razavian, J Sullivan, A Maki, S Carlsson. A baseline for visual instance retrieval with deep convolutional networks. In: Proceedings of International Conference on Learning Representations. 2015
|
74 |
A S Razavian, H Azizpour, J Sullivan, S Carlsson. CNN features offthe- shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2014, 806–813
https://doi.org/10.1109/CVPRW.2014.131
|
75 |
Z Xu, Y Yang, A G Hauptmann. A discriminative CNN video representation for event detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1798–1807
https://doi.org/10.1109/CVPR.2015.7298789
|
76 |
G Kordopatis-Zilos, S Papadopoulos, I Patras, Y Kompatsiaris. Nearduplicate video retrieval by aggregating intermediate CNN layers. In: Proceedings of International Conference on Multimedia Modeling. 2017, 251–263
https://doi.org/10.1007/978-3-319-51811-4_21
|
77 |
D Tran, L Bourdev, R Fergus, L Torresani, M Paluri. Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 4489–4497
https://doi.org/10.1109/ICCV.2015.510
|
78 |
I Sutskever, O Vinyals, Q V Le. Sequence to sequence learning with neural networks. In: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014, 3104–3112
|
79 |
H Zhang, M Wang, R Hong, T S Chua. Play and rewind: optimizing binary representations of videos by self-supervised temporal hashing. In: Proceedings of the 2016 ACM Multimedia Conference. 2016, 781–790
https://doi.org/10.1145/2964284.2964308
|
80 |
S Hochreiter, J Schmidhuber. Long short-term memory. Neural Computation, 1997, 9(8), 1735–1780
https://doi.org/10.1162/neco.1997.9.8.1735
|
81 |
K Cho, B Van Merriénboer, C Gulcehre, D Bahdanau, F Bougares, H Schwenk, Y Bengio. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 2014, 1724–1734
https://doi.org/10.3115/v1/D14-1179
|
82 |
J Song, Y Yang, Z Huang, H T Shen, R Hong. Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proceedings of the 19th ACM International Conference on Multimedia. 2011, 423–432
https://doi.org/10.1145/2072298.2072354
|
83 |
W L Zhao, S Tan, C W Ngo. Large-scale near-duplicate web video search: challenge and opportunity. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2009, 1624–1627
https://doi.org/10.1109/ICME.2009.5202830
|
84 |
Y G Jiang, C W Ngo. Visual word proximity and linguistics for semantic video indexing and near-duplicate retrieval. Computer Vision and Image Understanding, 2009, 113(3): 405–414
https://doi.org/10.1016/j.cviu.2008.10.002
|
85 |
L Liu, W Lai, X S Hua, S Q Yang. Video histogram: a novel video signature for efficient web video duplicate detection. In: Proceedings of International Conference on Multimedia Modeling. 2007, 94–103
https://doi.org/10.1007/978-3-540-69429-8_10
|
86 |
Z Huang, H T Shen, J Shao, X Zhou. Bounded coordinate system indexing for real-time video clip search. ACM Transactions on Information Systems, 2009, 27(3): 17
https://doi.org/10.1145/1508850.1508855
|
87 |
H T Shen, B C Ooi, X Zhou. Towards effective indexing for very large video sequence database. In: Proceedings of the 2005 ACMSIGMOD International Conference on Management of Data. 2005, 730–741
https://doi.org/10.1145/1066157.1066240
|
88 |
G Kordopatis-Zilos, S Papadopoulos, I Patras, Y Kompatsiaris. Nearduplicate video retrieval with deep metric learning. In: Proceedings of the IEEE International Conference on Computer Vision. 2017, 347–356
https://doi.org/10.1109/ICCVW.2017.49
|
89 |
C Böhm, S Berchtold, D A Keim. Searching in high-dimensional spaces: index structures for improving the performance of multimedia databases. ACM Computing Surveys, 2001, 33(3): 322–373
https://doi.org/10.1145/502807.502809
|
90 |
C G M Snoek, M Worring. Multimodal video indexing: a review of the state-of-the-art. Multimedia Tools and Applications, 2005, 25(1): 5–35
https://doi.org/10.1023/B:MTAP.0000046380.27575.a5
|
91 |
S Boughorbel, J P Tarel, N Boujemaa. Generalized histogram intersection kernel for image recognition. In: Proceedings of IEEE International Conference on Image Processing. 2005, 3: III–161
https://doi.org/10.1109/ICIP.2005.1530353
|
92 |
J Wu, J M Rehg. Beyond the Euclidean distance: creating effective visual codebooks using the histogram intersection kernel. In: Proceedings of the 12th IEEE International Conference on Computer Vision. 2009, 630–637
|
93 |
H V Jagadish, B C Ooi, K L Tan, C Yu, R Zhang. iDistance: an adaptive B+-tree based indexing method for nearest neighbor search. ACM Transactions on Database Systems, 2005, 30(2): 364–397
https://doi.org/10.1145/1071610.1071612
|
94 |
R Bayer, E Mccreight. Organization and Maintenance of Large Ordered Indexes. Software Pioneers, Springer, Berlin, Heidelberg, 2002, 245–262
https://doi.org/10.1007/978-3-642-59412-0_15
|
95 |
C Bohm, M Gruber, P Kunath, A Pryakhin, M Schubert. Prover: probabilistic video retrieval using the gauss-tree. In: Proceedings of the 23rd IEEE International Conference on Data Engineering. 2007, 1521–1522
https://doi.org/10.1109/ICDE.2007.369063
|
96 |
M Chen, S Mao, Y Liu. Big data: a survey. Mobile Networks and Applications, 2014, 19(2): 171–209
https://doi.org/10.1007/s11036-013-0489-0
|
97 |
J Wang, T Zhang, J Song, N Sebe, H T Shen. A survey on learning to hash. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 769–790
https://doi.org/10.1109/TPAMI.2017.2699960
|
98 |
J Wang, H T Shen, J Song, J Song, J Ji . Hashing for similarity search: a survey. 2014, arXiv preprint arXiv:1408.2927
|
99 |
X Zhou, L Chen, X Zhou. Structure tensor series-based large scale near-duplicate video retrieval. IEEE Transactions on Multimedia, 2012, 14(4): 1220–1233
https://doi.org/10.1109/TMM.2012.2194481
|
100 |
Y Wang, M Belkhatir, B Tahayna. Near-duplicate video retrieval based on clustering by multiple sequence alignment. In: Proceedings of the 20th ACM International Conference on Multimedia. 2012, 941–944
https://doi.org/10.1145/2393347.2396352
|
101 |
H K Tan, C W Ngo, T S Chua. Efficient mining of multiple partial near-duplicate alignments by temporal network. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1486–1498
https://doi.org/10.1109/TCSVT.2010.2077531
|
102 |
C W Ngo, W L Zhao, Y G Jiang. Fast tracking of near-duplicate keyframes in broadcast domain with transitivity propagation. In: Proceedings of the 14th ACM International Conference on Multimedia. 2006, 845–854
https://doi.org/10.1145/1180639.1180827
|
103 |
M Donoser, H Bischof. Diffusion processes for retrieval revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 1320–1327
https://doi.org/10.1109/CVPR.2013.174
|
104 |
S Bai, X Bai, Q Tian, L J Latecki. Regularized diffusion process on bidirectional context for object retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1213–1226
https://doi.org/10.1109/TPAMI.2018.2828815
|
105 |
T Mei, Y Rui, S Li, Q Tian. Multimedia search reranking: a literature survey. ACM Computing Surveys, 2014, 46(3): 38
https://doi.org/10.1145/2536798
|
106 |
S Bai, X Bai. Sparse contextual activation for efficient visual reranking. IEEE Transactions on Image Processing, 2016, 25(3): 1056–1069
https://doi.org/10.1109/TIP.2016.2514498
|
107 |
P Over, G Awad, M Michel, J Fiscus, W Kraaij, A F Smeaton. TRECVID 2009- goals, tasks, data, evaluation mechanisms and metrics. TRECVID 2009 papers, 2010, 1–42
|
108 |
J Law-To, A Joly, N Boujemaa. Muscle-VCD-2007: a live benchmark for video copy detection. Google Scholar, 2007
|
109 |
J Ren, F Chang, T Wood, J R Zhang. Efficient video copy detection via aligning video signature time series. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval. 2012, 14
https://doi.org/10.1145/2324796.2324814
|
110 |
A Karpenko, P Aarabi. Tiny videos: a large data set for nonparametric video retrieval and frame classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 618
https://doi.org/10.1109/TPAMI.2010.118
|
111 |
H K Tan, X Wu, C W Ngo, W L Zhao. Accelerating near-duplicate video matching by combining visual similarity and alignment distortion. In: Proceedings of the 16th ACM International Conference on Multimedia. 2008, 861–864
https://doi.org/10.1145/1459359.1459506
|
112 |
X Wu, C W Ngo, A G Hauptmann, H K Tan. Real-rime near-duplicate elimination for web video search with content and context. IEEE Transactions on Multimedia, 2009, 11(2): 196–207
https://doi.org/10.1109/TMM.2008.2009673
|
113 |
J Venna, J Peltonen, K Nybo, H Aidos, S Kaski. Information retrieval perspective to nonlinear dimensionality reduction for data visualization. Journal of Machine Learning Research, 2010, 11(1): 451–490
|
114 |
G E Hinton, S T Roweis. Stochastic neighbor embedding. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. 2003, 857–864
|
115 |
L V D Maaten, G Hinton. Visualizing data using t-SNE. Journal of Machine Learning Research, 2008, 9(Nov): 2579–2605
|
116 |
C Szegedy, W Liu, Y Jia, P Sermanet, S Reed, D Anguelov, D Erhan, V Vanhoucke, A Rabinovich. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 1–9
https://doi.org/10.1109/CVPR.2015.7298594
|
117 |
S R Ali, J Sullivan, A Maki, S Carlsson. A baseline for visual instance retrieval with deep convolutional networks. In: Proceedings of International Conference on Learning Representations. 2015
|
118 |
L Zheng, Y Zhao, S Wang, J Wang, Q Tian. Good practice in CNN feature transfer. 2016, arXiv preprint arXiv:1604.00133
|
119 |
Y Peng, J Qi, Y Yuan. CM-GANs: cross-modal generative adversarial networks for common representation learning. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15(1): 22
https://doi.org/10.1145/3284750
|
120 |
J Zhang, Y Peng, M Yuan. SCH-GAN: semi-supervised cross-modal hashing by generative adversarial network. IEEE Transactions on Cybernetics, 2018
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|