Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2018, Vol. 12 Issue (1) : 4-25    https://doi.org/10.1007/s11704-016-6195-x
REVIEW ARTICLE
Incomplete data management: a survey
Xiaoye MIAO1, Yunjun GAO1,2(), Su GUO1, Wanqi LIU1
1. College of Computer Science, Zhejiang University, Hangzhou 310027, China
2. The Key Lab of Big Data Intelligent Computing of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 Download: PDF(728 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Incomplete data accompanies our life processes and covers almost all fields of scientific studies, as a result of delivery failure, no power of battery, accidental loss, etc. However, how to model, index, and query incomplete data incurs big challenges. For example, the queries struggling with incomplete data usually have dissatisfying query results due to the improper incompleteness handling methods. In this paper, we systematically review the management of incomplete data, including modelling, indexing, querying, and handling methods in terms of incomplete data. We also overview several application scenarios of incomplete data, and summarize the existing systems related to incomplete data. It is our hope that this survey could provide insights to the database community on how incomplete data is managed, and inspire database researchers to develop more advanced processing techniques and tools to cope with the issues resulting from incomplete data in the real world.

Keywords incomplete data      query processing      indexing      application      system     
Corresponding Author(s): Yunjun GAO   
Just Accepted Date: 28 September 2016   Online First Date: 17 March 2017    Issue Date: 12 January 2018
 Cite this article:   
Xiaoye MIAO,Yunjun GAO,Su GUO, et al. Incomplete data management: a survey[J]. Front. Comput. Sci., 2018, 12(1): 4-25.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-016-6195-x
https://academic.hep.com.cn/fcs/EN/Y2018/V12/I1/4
1 Friedman T, Smith M. Measuring the business value of data quality. Gartner, 2011
2 Graham J. Missing Data: Analysis and Design. Springer Science & Business Media, 2012
https://doi.org/10.1007/978-1-4614-4018-5
3 Imieliński T, Lipski Jr W. Incomplete information in relational databases. Journal of the ACM, 1984, 31(4): 761–791
https://doi.org/10.1145/1634.1886
4 Abiteboul S, Kanellakis P, Grahne G. On the representation and querying of sets of possible worlds. Theoretical Computer Science, 1991, 78(1): 159–187
https://doi.org/10.1016/0304-3975(51)90007-2
5 Green T J, Tannen V. Models for incomplete and probabilistic information. In: Proceedings of International Conference on Extending Database Technology. 2006, 278–296
https://doi.org/10.1007/11896548_24
6 Antova L, Koch C, Olteanu D. From complete to incomplete information and back. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2007, 713–724
https://doi.org/10.1145/1247480.1247559
7 Libkin L. Incomplete information and certain answers in general data models. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2011, 59–70
https://doi.org/10.1145/1989284.1989294
8 Ooi B C, Goh C H, Tan K L. Fast high-dimensional data search in incomplete databases. In: Proceedings of International Conference on Very Large Data Bases. 1998, 357–367
9 Canahuate G, Gibas M, Ferhatosmanoglu H. Indexing incomplete databases. In: Proceedings of International Conference on Extending Database Technology. 2006, 884–901
https://doi.org/10.1007/11687238_52
10 Khalefa M E, Mokbel M F, Levandoski J J. Skyline query processing for incomplete data. In: Proceedings of the 24th IEEE International Conference on Data Engineering. 2008, 556–565
https://doi.org/10.1109/icde.2008.4497464
11 Gao Y, Miao X, Cui H, Chen G, Li Q. Processing k-skyband, constrained skyline, and group-by skyline queries on incomplete data. Expert Systems with Applications, 2014, 41(10): 4959–4974
https://doi.org/10.1016/j.eswa.2014.02.033
12 Lofi C, El Maarry K, Balke W T. Skyline queries in crowd-enabled databases. In: Proceedings of International Conference on Extending Database Technology. 2013, 465–476
https://doi.org/10.1145/2452376.2452431
13 Cheng W, Jin X, Sun J T, Lin X, Zhang X, Wang W. Searching dimension incomplete databases. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(3): 725–738
https://doi.org/10.1109/TKDE.2013.14
14 Olteanu D, Koch C, Antova L. World-set decompositions: Expressiveness and efficient algorithms. Theoretical Computer Science, 2008, 403(2): 265–284
https://doi.org/10.1016/j.tcs.2008.05.004
15 Arenas M, Pérez J, Reutter J. Data exchange beyond complete data. Journal of the ACM, 2013, 60(4): 28
https://doi.org/10.1145/2508028.2505985
16 Libkin L. Data exchange and incomplete information. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2006
https://doi.org/10.1145/1142351.1142360
17 Kharlamov E, Nutt W. Incompleteness in information integration. Proceedings of the VLDB Endowment, 2008, 1(2): 1652–1658
https://doi.org/10.14778/1454159.1454242
18 Eiter T, Nowicki B, Leone N, Lembo D, Rosati R, Staniszkis W, Ruzzi M, Terracina G, Lio V, Kalka E, Fink M, Greco G, Faber W, Lenzerini M, Iann i G, Gottlob G. The INFOMIX system for advanced integration of incomplete and inconsistent data. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2005, 915–917
19 Van der Meyden R. Logical approaches to incomplete information: a survey. In: Chomicki J, Saake G, . Logics for Databases and Information Systems. Springer, 1998, 307–356
https://doi.org/10.1007/978-1-4615-5643-5_10
20 Guttman A. R-trees: A Dynamic Index Structure for Spatial Searching. Vol 14. ACM, 1984
https://doi.org/10.1145/602259.602266
21 Miao X, Gao Y, Zheng B, Chen G, Cui H. Top-k dominating queries on incomplete data. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(1): 252–266
https://doi.org/10.1109/TKDE.2015.2460742
22 Miao X, Gao Y, Chen G, Zheng B, Cui H. Processing incomplete k nearest neighbor search. IEEE Transactions on Fuzzy Systems, 2016
https://doi.org/10.1109/TFUZZ.2016.2516562
23 Brinis S, Traina A J M, Traina Jr C. Analyzing missing data in metric spaces. Journal of Information and Data Management, 2014, 5(3): 224
24 Borzsonyi S, Kossmann D, Stocker K. The skyline operator. In: Proceedings of the 11th IEEE International Conference on Data Engineering. 2001, 421–430
https://doi.org/10.1109/ICDE.2001.914855
25 Bharuka R, Kumar P S. Finding skylines for incomplete data. In: Proceedings of Australasian Database Conference. 2013, 109–117
26 Miao X, Gao Y, Chen L, Chen G, Li Q, Jiang T. On efficient k-skyband query processing over incomplete data. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2013, 424–439
https://doi.org/10.1007/978-3-642-37487-6_32
27 Babanejad G, Ibrahim H, Udzir N I, Sidi F, Aljuboori A A A. Finding skyline points over dynamic incomplete database. In: Proceedings of Malaysian National Conference on Databases. 2014
28 Bharuka R, Kumar P S. Finding superior skyline points from incomplete data. In: Proceedings of International Conference on Management of Data. 2013, 35–44
29 Soliman M A, Ilyas I F, Ben-David S. Supporting ranking queries on uncertain and incomplete data. The VLDB Journal, 2010, 19(4): 477–501
https://doi.org/10.1007/s00778-009-0176-8
30 Zhang Z, Lu H, Ooi B C, Tung A K. Understanding the meaning of a shifted sky: a general framework on extending skyline query. The VLDB Journal, 2010, 19(2): 181–201
https://doi.org/10.1007/s00778-009-0148-z
31 Franklin M J, Kossmann D, Kraska T, Ramesh S, Xin R. CrowdDB: Answering queries with crowdsourcing. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2011, 61–72
https://doi.org/10.1145/1989323.1989331
32 Lofi C, El Maarry K, Balke W T. Skyline queries over incomplete data-error models for focused crowd-sourcing. In: Proceedings of International Conference on Conceptual Modeling. 2013, 298–312
https://doi.org/10.1007/978-3-642-41924-9_25
33 Nieke C, Güntzer U, Balke W T. Topcrowd. In: Proceedings of International Conference on Conceptual Modeling. 2014, 122–135
https://doi.org/10.1007/978-3-319-12206-9_10
34 Dixon J K. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(10): 617–621
https://doi.org/10.1109/TSMC.1979.4310090
35 Cheng W, Jin X, Sun J T. Probabilistic similarity query on dimension incomplete data. In: Proceedings of IEEE International Conference on Data Mining. 2009, 81–90
https://doi.org/10.1109/icdm.2009.72
36 Cuzzocrea A, Nucita A. I-SQE: a query engine for answering range queries over incomplete spatial databases. In: Proceedings of International Conference on Knowledge-Based and Intelligent Information and Engineering Systems. 2009, 91–101
https://doi.org/10.1007/978-3-642-04592-9_12
37 Cuzzocrea A, Nucita A. Reasoning on incompleteness of spatial information for effectively and efficiently answering range queries over incomplete spatial databases. In: Proceedings of International Conference on Flexible Query Answering Systems. 2009, 37–52
https://doi.org/10.1007/978-3-642-04957-6_4
38 Haghani P, Michel S, Aberer K. Evaluating top-k queries over incomplete data streams. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management. 2009, 877–886
https://doi.org/10.1145/1645953.1646064
39 Kolomvatsos K, Anagnostopoulos C, Hadjiefthymiades S. A time optimized scheme for top-k list maintenance over incomplete data streams. Information Sciences, 2015, 311: 59–73
https://doi.org/10.1016/j.ins.2015.03.035
40 Ma Z, Zhang K, Wang S, Yu C. A double-index-based k-dominant skyline algorithm for incomplete data stream. In: Proceedings of the 4th IEEE International Conference on Software Engineering and Service Science. 2013, 750–753
41 Abiteboul S, Segoufin L, Vianu V. Representing and querying XML with incomplete information. ACM Transactions on Database Systems, 2006, 31(1): 208–254
https://doi.org/10.1145/1132863.1132869
42 Barceló P, Libkin L, Poggi A, Sirangelo C. XML with incomplete information: models, properties, and query answering. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2009, 237–246
https://doi.org/10.1145/1559795.1559832
43 Barceló P, Libkin L, Poggi A, Sirangelo C. XML with incomplete information. Journal of the ACM, 2010, 58(1): 4
https://doi.org/10.1145/1870103.1870107
44 David C, Libkin L, Murlak F. Certain answers for XML queries. In: Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. 2010, 191–202
https://doi.org/10.1145/1807085.1807112
45 Gheerbrant A, Libkin L, Tan T. On the complexity of query answering over incomplete XML documents. In: Proceedings of the 15th ACM International Conference on Database Theory. 2012, 169–181
https://doi.org/10.1145/2274576.2274595
46 Gheerbrant A, Libkin L. Certain answers over incomplete XML documents: extending tractability boundary. Theory of Computing Systems, 2015, 57(4): 892–926
https://doi.org/10.1007/s00224-014-9596-y
47 Nikolaou C, Koubarakis M. Querying incomplete geospatial information in RDF. In: Proceedings of International Symposium on Spatial and Temporal Databases. 2013, 447–450
https://doi.org/10.1007/978-3-642-40235-7_26
48 Pema E, Tan W C. Query answering over incomplete and uncertain RDF. International Workshop on the Web and Databases, 2014
49 Twala B, Cartwright M, Shepperd M. Comparison of various methods for handling incomplete data in software engineering databases. In: Proceedings of IEEE International Symposium on Empirical Software Engineering. 2005
https://doi.org/10.1109/isese.2005.1541819
50 Little R J A, Rubin D B. Statistical Analysis with Missing Data. New York: John Wiley & Sons, 2014
51 García-Laencina P J, Sancho-Gómez J L, Figueiras-Vidal A R. Pattern classification with missing data: a review. Neural Computing and Applications, 2010, 19(2): 263–282
https://doi.org/10.1007/s00521-009-0295-6
52 Rubin D B. Multiple Imputation for Nonresponse in Surveys. Vol 81. New York: John Wiley & Sons, 2004
53 Manly B F J. Multivariate statistical methods: a primer. Boca Raton: CRC Press, 1994
54 Van Hulle M M. Self-organizing maps. In: Rozenberg G, Bäck T, Kok J N, . Handbook of Natural Computing. Berlin: Springer, 2012, 585–622
https://doi.org/10.1007/978-3-540-92910-9_19
55 Samad T, Harp S A. Self–organization with partial data. Network: Computation in Neural Systems, 2009
56 Fessant F, Midenet S. Self-organising map for data imputation and correction in surveys. Neural Computing & Applications, 2002, 10(4): 300–310
https://doi.org/10.1007/s005210200002
57 Farhangfar A, Kurgan L, Pedrycz W. A novel framework for imputation of missing values in databases. IEEE Transactions on Systems, Man, and Cybernetics, 2007, 37(5): 692–709
https://doi.org/10.1109/TSMCA.2007.902631
58 Jerez J M, Molina I, García-Laencina P J, Alba E, Ribelles N, Martín M, Franco L. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artificial Intelligence in Medicine, 2010, 50(2): 105–115
https://doi.org/10.1016/j.artmed.2010.05.002
59 Schmitt P, Mandel J, Guedj M. A comparison of six methods for missing data imputation. Journal of Biometrics & Biostatistics, 2015
60 Zhu X, Zhang S, Jin Z, Zhang Z, Xu Z. Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(1): 110–121
https://doi.org/10.1109/TKDE.2010.99
61 Lobato F, Sales C, Araujo I, Tadaiesky V, Dias L, Ramos L, Santana A. Multi-objective genetic algorithm for missing data imputation. Pattern Recognition Letters, 2015, 68: 126–131
https://doi.org/10.1016/j.patrec.2015.08.023
62 García J C F, Kalenatic D, Bello C A L. Missing data imputation in multivariate data by evolutionary algorithms. Computers in Human Behavior, 2011, 27(5): 1468–1474
https://doi.org/10.1016/j.chb.2010.06.026
63 Krishna M, Ravi V. Particle swarm optimization and covariance matrix based data imputation. In: Proceedings of IEEE International Conference on Computational Intelligence and Computing Research. 2013, 1–6
https://doi.org/10.1109/iccic.2013.6724232
64 Gautam C, Ravi V. Evolving clustering based data imputation. In: Proceedings of International Conference on Circuit, Power and Computing Technologies. 2014, 1763–1769
https://doi.org/10.1109/iccpct.2014.7054988
65 Gautam C, Ravi V. Data imputation via evolutionary computation, clustering and a neural network. Neurocomputing, 2015, 156: 134–142
https://doi.org/10.1016/j.neucom.2014.12.073
66 Hung N Q V, Thang D C, Weidlich M, Aberer K. Minimizing efforts in validating crowd answers. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2015, 999–1014
https://doi.org/10.1145/2723372.2723731
67 Trushkowsky B, Kraska T, Franklin M J, Sarkar P. Crowdsourced enumeration queries. In: Proceedings of the 29th IEEE International Conference on Data Engineering. 2013, 673–684
https://doi.org/10.1109/icde.2013.6544865
68 Chu X, Morcos J, Ilyas I F, Ouzzani M, Papotti P, Tang N, Ye Y. KATARA: a data cleaning system powered by knowledge bases and crowdsourcing. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2015, 1247–1261
https://doi.org/10.1145/2723372.2749431
69 Li Z, Sharaf M A, Sitbon L, Sadiq S, Indulska M, Zhou X. A webbased approach to data imputation. World Wide Web, 2014, 17(5): 873–897
https://doi.org/10.1007/s11280-013-0263-z
70 Li Z, Shang S, Xie Q, Zhang X. Cost reduction for Web-based data imputation. In: Proceedings of International Conference on Database Systems for Advanced Applications. 2014, 438–452
https://doi.org/10.1007/978-3-319-05813-9_29
71 Li Z, Qin L, Cheng H, Zhang X, Zhou X. TRIP: an interactive retrieving-inferring data imputation approach. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(9): 2550–2563
https://doi.org/10.1109/TKDE.2015.2411276
72 Elmeleegy H, Madhavan J, Halevy A. Harvesting relational tables from lists on the Web. Proceedings of the VLDB Endowment, 2009, 2(1): 1078–1089
https://doi.org/10.14778/1687627.1687749
73 Gupta R, Sarawagi S. Answering table augmentation queries from unstructured lists on theWeb. Proceedings of the VLDB Endowment, 2009, 2(1): 289–300
https://doi.org/10.14778/1687627.1687661
74 Yakout M, Ganjam K, Chakrabarti K, Chaudhuri S. Infogather: Entity augmentation and attribute discovery by holistic matching with Web tables. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2012, 97–108
https://doi.org/10.1145/2213836.2213848
75 Fan W, Li J, Ma S, Tang N, Yu W. Towards certain fixes with editing rules and master data. Proceedings of the VLDB Endowment, 2010, 3(1-2): 173–184
https://doi.org/10.14778/1920841.1920867
76 Song S, Chen L. Differential dependencies: reasoning and discovery. ACM Transactions on Database Systems, 2011, 36(3): 16
https://doi.org/10.1145/2000824.2000826
77 Song S, Zhang A, Chen L, Wang J. Enriching data imputation with extensive similarity neighbors. Proceedings of the VLDB Endowment, 2015, 8(11): 1286–1297
https://doi.org/10.14778/2809974.2809989
78 Fan W. Dependencies revisited for improving data quality. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2008, 159–170
https://doi.org/10.1145/1376916.1376940
79 Zhang S, Jin Z, Zhu X. Missing data imputation by utilizing information within incomplete instances. Journal of Systems and Software, 2011, 84(3): 452–459
https://doi.org/10.1016/j.jss.2010.11.887
80 Aydilek I B, Arslan A. A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm. Information Sciences, 2013, 233: 25–35
https://doi.org/10.1016/j.ins.2013.01.021
81 Nelwamondo F V, Golding D, Marwala T. A dynamic programming approach to missing data estimation using neural networks. Information Sciences, 2013, 237: 49–58
https://doi.org/10.1016/j.ins.2009.10.008
82 Pan R, Yang T, Cao J, Lu K, Zhang Z. Missing data imputation by k nearest neighbours based on grey relational structure and mutual information. Applied Intelligence, 2015, 43(3): 614–632
https://doi.org/10.1007/s10489-015-0666-x
83 Tian J, Yu B, Yu D, Ma S. Missing data analyses: A hybrid multiple imputation algorithm using Gray System Theory and entropy based on clustering. Applied Intelligence, 2014, 40(2): 376–388
https://doi.org/10.1007/s10489-013-0469-x
84 Grzymala-Busse J W, Wang A Y. Modified algorithms LEM1 and LEM2 for rule induction from data with missing attribute values. In: Proceedings of the 5th International Workshop on Rough Sets and Soft Computing at the 3rd Joint Conference on Information Sciences. 1997, 69–72
85 Grzymala-Busse J W. Rough set strategies to data with missing attribute values. In: Lin T Y, Ohsuga S, Liau C J, et al., . Foundations and Novel Approaches in Data Mining. Studies in Computational Intelligence, Vol 9. Berlin: Springer, 2006, 197–212
https://doi.org/10.1007/11539827_11
86 Junior J R B, do Carmo Nicoletti M, Zhao L. An embedded imputation method via attribute-based decision graphs. Expert Systems with Applications, 2016, 57: 159–177
https://doi.org/10.1016/j.eswa.2016.03.027
87 Zhong C, Pedrycz W, Wang D, Li L, Li Z. Granular data imputation: a framework of granular computing. Applied Soft Computing, 2016, 46: 307–316
https://doi.org/10.1016/j.asoc.2016.05.006
88 Liu S, Dai H, Gan M. Information-decomposition-model-based missing value estimation for not missing at random dataset. International Journal of Machine Learning and Cybernetics, 2015, 1–11
https://doi.org/10.1007/s13042-015-0354-5
89 Leke C, Marwala T, Paul S. Proposition of a theoretical model for missing data imputation using deep learning and evolutionary algorithms. 2015, arXiv:1512.01362
90 Asif M T, Mitrovic N, Garg L, Dauwels J, Jaillet P. Low-dimensional models for missing data imputation in road networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2013, 3527–3531
https://doi.org/10.1109/icassp.2013.6638314
91 Cismondi F, Fialho A S, Vieira S M, Reti S R, Sousa J M, Finkelstein S N. Missing data in medical databases: impute, delete or classify? Artificial Intelligence in Medicine, 2013, 58(1): 63–72
https://doi.org/10.1016/j.artmed.2013.01.003
92 Cheema J R. A review of missing data handling methods in education research. Review of Educational Research, 2014, 84(4): 487–508
https://doi.org/10.3102/0034654314532697
93 Enders C K. Dealing with missing data in developmental research. Child Development Perspectives, 2013, 7(1): 27–31
https://doi.org/10.1111/cdep.12008
94 Aste M, Boninsegna M, Freno A, Trentin E. Techniques for dealing with incomplete data: a tutorial and survey. Pattern Analysis and Applications, 2015, 18(1): 1–29
https://doi.org/10.1007/s10044-014-0411-9
95 Folch-Fortuny A, Arteaga F, Ferrer A. Missing data imputation toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems, 2016, 154: 93–100
https://doi.org/10.1016/j.chemolab.2016.03.019
96 Templ M, Alfons A, Filzmoser P. Exploring incomplete data using visualization techniques. Advances in Data Analysis and Classification, 2012, 6(1): 29–47
https://doi.org/10.1007/s11634-011-0102-y
97 Kuosmanen T, Post T. Measuring economic efficiency with incomplete price information: with an application to European commercial banks. European Journal of Operational Research, 2001, 134(1): 43–58
https://doi.org/10.1016/S0377-2217(00)00237-X
98 Fernández-Vázquez E. Recovering matrices of economic flows from incomplete data and a composite prior. Entropy, 2010, 12(3): 516–527
https://doi.org/10.3390/e12030516
99 Wang Y, Chen C. Grey markov model forecast in economic system under incomplete information and its application on foreign direct investment. In: Proceedings of International Conference on Information Management, Innovation Management and Industrial Engineering. 2011, 117–120
https://doi.org/10.1109/iciii.2011.175
100 Hassanzadeh H R, Phan J H, Wang M D. A semi-supervised method for predicting cancer survival using incomplete clinical data. In: Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015, 210–213
https://doi.org/10.1109/embc.2015.7318337
101 Abreu P H, Amaro H, Silva D C, Machado P, Abreu M H, Afonso N, Dourado A. Overall survival prediction for women breast cancer using ensemble methods and incomplete clinical data. In: Proceedings of XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013. 2014, 1366–1369
https://doi.org/10.1007/978-3-319-00846-2_338
102 Zaffalon M, Wesnes K, Petrini O. Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine, 2003, 29(1): 61–79
https://doi.org/10.1016/S0933-3657(03)00046-0
103 Schneider T. Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. Journal of Climate, 2001, 14(5): 853–871
https://doi.org/10.1175/1520-0442(2001)014<0853:AOICDE>2.0.CO;2
104 Plaia A, Bondì A L. Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment, 2006, 40(38): 7316–7330
https://doi.org/10.1016/j.atmosenv.2006.06.040
105 Miyama E, Managi S. Global environmental emissions estimate: application of multiple imputation. Environmental Economics and Policy Studies, 2014, 16(2): 115–135
https://doi.org/10.1007/s10018-014-0080-3
106 Antova L, Koch C, Olteanu D. MayBMS: managing incomplete information with probabilistic world-set decompositions. In: Proceedings of the 23rd IEEE International Conference on Data Engineering. 2007, 1479–1480
https://doi.org/10.1109/icde.2007.369042
107 Huang J, Antova L, Koch C, Olteanu D. MayBMS: a probabilistic database management system. In: Proceedings of ACM SIGMOD International Conference on Management of Data. 2009, 1071–1074
https://doi.org/10.1145/1559845.1559984
108 Kambhampati S, Wolf G, Chen Y, Khatri H, Chokshi B, Fan J, Nambiar U. QUIC: handling query imprecision & data incompleteness in autonomous databases. In: Proceedings of Conference on Innovative Data Systems Research. 2007, 7–10
109 Widom J. Trio: a system for integrated management of data, accuracy, and lineage. Technical Report, 2004
110 Wolf G, Khatri H, Chokshi B, Fan J, Chen Y, Kambhampati S. Query processing over incomplete autonomous databases. In: Proceedings of the 33rd International Conference on Very Large Data Bases. 2007, 651–662
111 Wolf G, Kalavagattu A, Khatri H, Balakrishnan R, Chokshi B, Fan J, Chen Y, Kambhampati S. Query processing over incomplete autonomous databases: query rewriting using learned data dependencies. The VLDB Journal, 2009, 18(5): 1167–1190
https://doi.org/10.1007/s00778-009-0155-0
112 Raghunathan R, De S, Kambhampati S. Bayesian networks for supporting query processing over incomplete autonomous databases. Journal of Intelligent Information Systems, 2014, 42(3): 595–618
https://doi.org/10.1007/s10844-013-0277-0
113 Qarabaqi B, Riedewald M. User-driven refinement of imprecise queries. In: Proceedings of the 30th IEEE International Conference on Data Engineering. 2014, 916–927
[1] Bing WEI, Limin XIAO, Bingyu ZHOU, Guangjun QIN, Baicheng YAN, Zhisheng HUO. Fine-grained management of I/O optimizations based on workload characteristics[J]. Front. Comput. Sci., 2021, 15(3): 153102-.
[2] Cungen CAO, Lanxi HU, Yuefei SUI. Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic[J]. Front. Comput. Sci., 2021, 15(3): 153401-.
[3] Ahmer Khan JADOON, Jing LI, Licheng WANG. Physical layer authentication for automotive cyber physical systems based on modified HB protocol[J]. Front. Comput. Sci., 2021, 15(3): 153809-.
[4] Panthadeep BHATTACHARJEE, Pinaki MITRA. A survey of density based clustering algorithms[J]. Front. Comput. Sci., 2021, 15(1): 151308-.
[5] Zhumin CHEN, Xueqi CHENG, Shoubin DONG, Zhicheng DOU, Jiafeng GUO, Xuanjing HUANG, Yanyan LAN, Chenliang LI, Ru LI, Tie-Yan LIU, Yiqun LIU, Jun MA, Bing QIN, Mingwen WANG, Jirong WEN, Jun XU, Min ZHANG, Peng ZHANG, Qi ZHANG. Information retrieval: a view from the Chinese IR community[J]. Front. Comput. Sci., 2021, 15(1): 151601-.
[6] Yuling MA, Chaoran CUI, Jun YU, Jie GUO, Gongping YANG, Yilong YIN. Multi-task MIML learning for pre-course student performance prediction[J]. Front. Comput. Sci., 2020, 14(5): 145313-.
[7] Ling SHEN, Richang HONG, Yanbin HAO. Advance on large scale near-duplicate video retrieval[J]. Front. Comput. Sci., 2020, 14(5): 145702-.
[8] Meifan ZHANG, Hongzhi WANG, Jianzhong LI, Hong GAO. Diversification on big data in query processing[J]. Front. Comput. Sci., 2020, 14(4): 144607-.
[9] Yi LIU, Tian SONG, Lejian LIAO. TPII: tracking personally identifiable information via user behaviors in HTTP traffic[J]. Front. Comput. Sci., 2020, 14(3): 143801-.
[10] Tao LIAN, Lin DU, Mingfu ZHAO, Chaoran CUI, Zhumin CHEN, Jun MA. Evaluating and improving the interpretability of item embeddings using item-tag relevance information[J]. Front. Comput. Sci., 2020, 14(3): 143603-.
[11] Yiteng PAN, Fazhi HE, Haiping YU. A correlative denoising autoencoder to model social influence for top-N recommender system[J]. Front. Comput. Sci., 2020, 14(3): 143301-.
[12] Guijuan ZHANG, Yang LIU, Xiaoning JIN. A survey of autoencoder-based recommender systems[J]. Front. Comput. Sci., 2020, 14(2): 430-450.
[13] Ming HE, Hao GUO, Guangyi LV, Le WU, Yong GE, Enhong CHEN, Haiping MA. Leveraging proficiency and preference for online Karaoke recommendation[J]. Front. Comput. Sci., 2020, 14(2): 273-290.
[14] Yuanrui ZHANG, Frédéric MALLET, Yixiang CHEN. A verification framework for spatio-temporal consistency language with CCSL as a specification language[J]. Front. Comput. Sci., 2020, 14(1): 105-129.
[15] Tun LI, Jun YE, Qingping TAN. Towards functional verifying a family of SystemC TLMs[J]. Front. Comput. Sci., 2020, 14(1): 53-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed