Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2020, Vol. 14 Issue (2) : 417-429    https://doi.org/10.1007/s11704-018-8116-1
RESEARCH ARTICLE
Real-time visual tracking using complementary kernel support correlation filters
Zhenyang SU1,2, Jing LI1(), Jun CHANG1, Bo DU1, Yafu XIAO1
1. School of Computer Science, Wuhan University,Wuhan 430072, China
2. Department of Digital Media Technology, Huanggang Normal University, Huangzhou 438000, China
 Download: PDF(1604 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Despite demonstrated success of SVM based trackers, their performance remains a boosting room if carefully considering the following factors: first, the tradeoff between sampling and budgeting samples affects tracking accuracy and efficiency much; second, how to effectively fuse different types of features to learn a robust target representation plays a key role in tracking accuracy. In this paper, we propose a novel SVM based tracking method that handles the first factor with the help of the circulant structures of the samples and the second one by a multi-kernel learning mechanism. Specifically, we formulate an SVM classification model for visual tracking that incorporates two types of kernels whose matrices are circulant, fully taking advantage of the complementary traits of the color and HOG features to learn a robust target representation. Moreover, it is fortunate that the SVM model has a closed-form solution in terms of both the classifier weights and the kernel weights, and both can be efficiently computed via fast Fourier transforms (FFTs). Extensive evaluations on OTB100 and VOT2016 visual tracking benchmarks demonstrate that the proposed method achieves a favorable performance against various state-of-the-art trackers with a speed of 50 fps on a single CPU.

Keywords visual tracking      SVM      correlation filter      multikernel learning     
Corresponding Author(s): Jing LI   
Just Accepted Date: 09 August 2018   Online First Date: 17 September 2019    Issue Date: 16 October 2019
 Cite this article:   
Zhenyang SU,Jing LI,Jun CHANG, et al. Real-time visual tracking using complementary kernel support correlation filters[J]. Front. Comput. Sci., 2020, 14(2): 417-429.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-018-8116-1
https://academic.hep.com.cn/fcs/EN/Y2020/V14/I2/417
1 X Li, W Hu, C Shen, Z Zhang, A Dick, A V D Hengel. A survey of appearance models in visual object tracking. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 1–48
https://doi.org/10.1145/2508037.2508039
2 Y Song, C Ma, X Wu, L Gong, L Bao, W Zuo, C Shen, R Lau, M H Yang. VITAL: visual tracking via adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 8990–8999
https://doi.org/10.1109/CVPR.2018.00937
3 K Zhang, L Zhang, M H Yang. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877
https://doi.org/10.1007/978-3-642-33712-3_62
4 X Jia, H Lu, M H Yang. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829
5 K Zhang, L Zhang, M H Yang. Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10): 2002–2015
https://doi.org/10.1109/TPAMI.2014.2315808
6 W Zhong, H Lu, M H Yang. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845
7 W Chen, K Zhang, Q Liu. Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble. Neurocomputing, 2016, 214: 607–617
https://doi.org/10.1016/j.neucom.2016.06.048
8 J Yang, K Zhang, Q Liu. Robust object tracking by online fisher discrimination boosting feature selection. Computer Vision and Image Understanding, 2016, 153: 100–108
https://doi.org/10.1016/j.cviu.2016.02.003
9 H Song, Y Zheng, K Zhang. Robust visual tracking via self-similarity learning. Electronics Letters, 2016, 53(1): 20–22
https://doi.org/10.1049/el.2016.3011
10 H Song, G Wang, K Zhang. Hyperspectral image denoising via lowrank matrix recovery. Remote Sensing Letters, 2014, 5(10): 872–881
https://doi.org/10.1080/2150704X.2014.973997
11 K Zhang, Q Liu, H Song, X Li. A variational approach to simultaneous image segmentation and bias correction. IEEE Transactions on Cybernetics, 2015, 45(8): 1426–1437
https://doi.org/10.1109/TCYB.2014.2352343
12 K Zhang, L Zhang, K M Lam, D Zhang. A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics, 2016, 46(2): 546–557
https://doi.org/10.1109/TCYB.2015.2409119
13 H Song. Robust visual tracking via online informative feature selection. Electronics Letters, 2014, 50(25): 1931–1933
https://doi.org/10.1049/el.2014.1911
14 K Zhang, H Song. Real-time visual tracking via online weighted multiple instance learning. Pattern Recognition, 2013, 46(1): 397–411
https://doi.org/10.1016/j.patcog.2012.07.013
15 K Zhang, Q Liu, Y Wu, M H Yang. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792
16 Y Wu, J Lim, M H Yang. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418
https://doi.org/10.1109/CVPR.2013.312
17 N Wang, J Shi, D Y Yeung, J Jia. Understanding and diagnosing visual tracking systems. In: Proceedings of IEEE International Conference on Computer Vision. 2015, 3101–3109
https://doi.org/10.1109/ICCV.2015.355
18 S Avidan. Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072
https://doi.org/10.1109/TPAMI.2004.53
19 Y Bai, M Tang. Robust tracking via weakly supervised ranking SVM. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1854–1861
20 S Hare, S Golodetz, A Saffari, V Vineet, M M Cheng, S L Hicks, P H Torr. Struck: structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109
https://doi.org/10.1109/TPAMI.2015.2509974
21 J Zhang, S Ma, S Sclaroff. MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of European Conference on Computer Vision. 2014, 188–203
https://doi.org/10.1007/978-3-319-10599-4_13
22 H Song, B Huang, Q Liu, K Zhang. Improving the spatial resolution of landsat TM/ETM+ through fusion with SPOT5 images via learningbased super-resolution. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1195–1204
https://doi.org/10.1109/TGRS.2014.2335818
23 J Ning, J Yang, S Jiang, L Zhang, M H Yang. Object tracking via dual linear structured SVM and explicit feature map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4266–4274
https://doi.org/10.1109/CVPR.2016.462
24 H Song. Active contours driven by regularised gradient flux flows for image segmentation. Electronics Letters, 2014, 50(14): 992–994
https://doi.org/10.1049/el.2014.1710
25 W M Zuo, X H Wu, L Lin, L Zhang, M H Yang. Learning support correlation filters for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1158–1172
https://doi.org/10.1109/TPAMI.2018.2829180
26 H Song, Q Liu, G Wang, R Hang, B Huang. Spatiotemporal satellite image fusion using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(3): 821–829
https://doi.org/10.1109/JSTARS.2018.2797894
27 H Song, Y Zheng, K Zhang. Efficient algorithm for piecewise-smooth model with approximately explicit solutions. Electronics Letters, 2017, 53(4): 233–235
https://doi.org/10.1049/el.2016.4241
28 M Wang, Y Liu, Z Huang. Large margin object tracking with circulant feature maps. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4021–4029
https://doi.org/10.1109/CVPR.2017.510
29 J F Henriques, R Caseiro, P Martins, J Batista. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583–596
https://doi.org/10.1109/TPAMI.2014.2345390
30 L Bertinetto, J Valmadre, S Golodetz, O Miksik, P H Torr. Staple: complementary learners for real-time tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 1401–1409
https://doi.org/10.1109/CVPR.2016.156
31 K Zhang, L Zhang, Q Liu, D Zhang, M H Yang. Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision. 2014, 127–141
https://doi.org/10.1007/978-3-319-10602-1_9
32 H Song, G Wang, A Cao, Q Liu, B Huang. Improving the spatial resolution of FY-3 microwave radiation imager via fusion with FY-3/MERSI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(7): 3055–3063
https://doi.org/10.1109/JSTARS.2017.2665524
33 D S Bolme, J R Beveridge, B A Draper, Y M Lui. Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2010, 2544–2550
https://doi.org/10.1109/CVPR.2010.5539960
34 K Zhang, Q Liu, J Yang, M H Yang. Visual tracking via boolean map representations. Pattern Recognition, 2018, 81: 147–160
https://doi.org/10.1016/j.patcog.2018.03.029
35 K Zhang, X Li, H Song, Q Liu, W Lian. Visual tracking using spatiotemporally nonlocally regularized correlation filter. Pattern Recognition, 2018, 83: 185–195
https://doi.org/10.1016/j.patcog.2018.05.017
36 M Tang, J Feng. Multi-kernel correlation filter for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3038–3046
https://doi.org/10.1109/ICCV.2015.348
37 H Song, G Wang, K Zhang. Multiple change detection for multispectral remote sensing images via joint sparse representation. Optical Engineering, 2014, 53(12): 123103
https://doi.org/10.1117/1.OE.53.12.123103
38 Y Qi, L Qin, J Zhang, S Zhang, Q Huang, M H Yang. Structure-aware local sparse coding for visual tracking. IEEE Transactions on Image Processing, 2018, 27(8): 3857–3869
https://doi.org/10.1109/TIP.2018.2797482
39 C Sun, D Wang, H Lu, M H Yang. Learning spatial-aware regressions for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 8962–8970
https://doi.org/10.1109/CVPR.2018.00934
40 Y Qi, S Zhang, L Qin, Q Huang, H Yao, J Lim, M H Yang. Hedging deep features for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(5): 1116–1130
https://doi.org/10.1109/TPAMI.2018.2828817
41 C Sun, D Wang, H Lu, M H Yang. Correlation tracking via joint discrimination and reliability learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 489–497
https://doi.org/10.1109/CVPR.2018.00058
42 T Zhang, S Liu, C Xu, B Liu, M H Yang. Correlation particle filter for visual tracking. IEEE Transactions on Image Processing, 2018, 27(6): 2676–2687
https://doi.org/10.1109/TIP.2017.2781304
43 T Zhang, C Xu, M H Yang. Learning multi-task correlation particle filters for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(2): 365–378
https://doi.org/10.1109/TPAMI.2018.2797062
44 C Ma, J B Huang, X Yang, M H Yang. Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3074–3082
https://doi.org/10.1109/ICCV.2015.352
45 M Varma, D Ray. Learning the discriminative power-invariance tradeoff. In: Proceedings of International Conference on Computer Vision. 2007, 1–8
https://doi.org/10.1109/ICCV.2007.4408875
46 Y Wu, J Lim, M H Yang. Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1834–1848
https://doi.org/10.1109/TPAMI.2014.2388226
47 F Tang, S Brennan, Q Zhao, H Tao. Co-tracking using semi-supervised support vector machines. In: Proceedings of International Conference on Computer Vision. 2007, 1–8
https://doi.org/10.1109/ICCV.2007.4408954
48 X Li, A Dick, H Wang, C Shen, A Van Den Hengel. Graph mode-based contextual kernels for robust SVM tracking. In: Proceedings of International Conference on Computer Vision. 2011, 1156–1163
https://doi.org/10.1109/ICCV.2011.6126364
49 J S Supancic, D Ramanan. Self-paced learning for long-term tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2379–2386
https://doi.org/10.1109/CVPR.2013.308
50 M Danelljan, F Shahbaz Khan, M Felsberg, J Van De Weijer. Adaptive color attributes for real-time visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1090–1097
https://doi.org/10.1109/CVPR.2014.143
51 Y Li, J Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In: Proceedings of European Conference on Computer Vision. 2014, 254–265
https://doi.org/10.1007/978-3-319-16181-5_18
52 C Ma, X Yang, C Zhang, M H Yang. Long-term correlation tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 5388–5396
https://doi.org/10.1109/CVPR.2015.7299177
53 Z Hong, Z Chen, C Wang, X Mei, D Prokhorov, D Tao. Multi-store tracker (muster): a cognitive psychology inspired approach to object tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 749–758
https://doi.org/10.1109/CVPR.2015.7298675
54 J Choi, H Jin Chang, J Jeong, Y Demiris, J Young Choi. Visual tracking using attention-modulated disintegration and integration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4321–4330
https://doi.org/10.1109/CVPR.2016.468
55 M Danelljan, G Hager, F Shahbaz Khan, M Felsberg. Learning spatially regularized correlation filters for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 4310–4318
https://doi.org/10.1109/ICCV.2015.490
56 Y Qi, S Zhang, L Qin, H Yao, Q Huang, J Lim, M H Yang. Hedged deep tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4303–4311
https://doi.org/10.1109/CVPR.2016.466
57 S Liu, T Zhang, X Cao, C Xu. Structural correlation filter for robust visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 4312–4320
https://doi.org/10.1109/CVPR.2016.467
58 T Zhang, C Xu, M H Yang. Multi-task correlation particle filter for robust object tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 4335–4343
https://doi.org/10.1109/CVPR.2017.512
59 H Kiani Galoogahi, A Fagg, S Lucey. Learning background-aware correlation filters for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1135–1143
https://doi.org/10.1109/ICCV.2017.129
60 M Mueller, N Smith, B Ghanem. Context-aware correlation filter tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1396–1404
https://doi.org/10.1109/CVPR.2017.152
61 A Lukezic, T Vojír, L C Zajc, J Matas, M Kristan. Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 6309–6318
https://doi.org/10.1109/CVPR.2017.515
62 B Scholkopf, A J Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Massachusetts: MIT Press, 2001
63 G R Lanckriet, T De Bie, N Cristianini, M I Jordan, W S Noble. A statistical framework for genomic data fusion. Bioinformatics, 2004, 20(16): 2626–2635
https://doi.org/10.1093/bioinformatics/bth294
64 M Kristan, A Leonardis, J Matas, M Felsberg, R Pflugfelder, L Čehovin, T Vojír, G Häger, A Lukežiˇc, G Fernández, others. The visual object tracking VOT2016 challenge results. In: Proceedings of European Conference on Computer Vision Workshops. 2016, 777–823
[1] Article highlights Download
[1] Shahid AKBAR, Maqsood HAYAT, Muhammad IQBAL, Muhammad TAHIR. iRNA-PseTNC: identification of RNA 5-methylcytosine sites using hybrid vector space of pseudo nucleotide composition[J]. Front. Comput. Sci., 2020, 14(2): 451-460.
[2] Jiaqing FAN, Huihui SONG, Kaihua ZHANG, Qingshan LIU, Fei YAN, Wei LIAN. Real-time manifold regularized context-aware correlation tracking[J]. Front. Comput. Sci., 2020, 14(2): 334-348.
[3] Haijun WANG, Hongjuan GE. Visual tracking using discriminative representation with 2 regularization[J]. Front. Comput. Sci., 2019, 13(1): 199-211.
[4] Jun ZHANG, Bineng ZHONG, Pengfei WANG, Cheng WANG, Jixiang DU. Robust feature learning for online discriminative tracking without large-scale pre-training[J]. Front. Comput. Sci., 2018, 12(6): 1160-1172.
[5] Ning CHEN, Jun ZHU, Jianfei CHEN, Ting CHEN. Dropout training for SVMs with data augmentation[J]. Front. Comput. Sci., 2018, 12(4): 694-713.
[6] Nan REN,Junping DU,Suguo ZHU,Linghui LI,Dan FAN,JangMyung LEE. Robust visual tracking based on scale invariance and deep learning[J]. Front. Comput. Sci., 2017, 11(2): 230-242.
[7] Ke TU,Hongbo LI,Fuchun SUN. A statistical learning based image denoising approach[J]. Front. Comput. Sci., 2015, 9(5): 713-719.
[8] Ali KHAZAEE,A. E. ZADEH. ECG beat classification using particle swarm optimization and support vector machine[J]. Front. Comput. Sci., 2014, 8(2): 217-231.
[9] Lean YU, Shouyang WANG, Kin Keung LAI. Developing an SVM-based ensemble learning system for customer risk identification collaborating with customer relationship management[J]. Front Comput Sci Chin, 2010, 4(2): 196-203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed