Please wait a minute...
Frontiers of Computer Science

ISSN 2095-2228

ISSN 2095-2236(Online)

CN 10-1014/TP

Postal Subscription Code 80-970

2018 Impact Factor: 1.129

Front. Comput. Sci.    2024, Vol. 18 Issue (5) : 185329    https://doi.org/10.1007/s11704-023-3277-4
RESEARCH ARTICLE
A MLP-Mixer and mixture of expert model for remaining useful life prediction of lithium-ion batteries
Lingling ZHAO1, Shitao SONG2, Pengyan WANG3, Chunyu WANG1, Junjie WANG4(), Maozu GUO5()
1. Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
2. School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121004, China
3. School of Computer Science, Northeast Electric Power University, Jilin 132000, China
4. Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
5. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
 Download: PDF(13474 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Accurately predicting the Remaining Useful Life (RUL) of lithium-ion batteries is crucial for battery management systems. Deep learning-based methods have been shown to be effective in predicting RUL by leveraging battery capacity time series data. However, the representation learning of features such as long-distance sequence dependencies and mutations in capacity time series still needs to be improved. To address this challenge, this paper proposes a novel deep learning model, the MLP-Mixer and Mixture of Expert (MMMe) model, for RUL prediction. The MMMe model leverages the Gated Recurrent Unit and Multi-Head Attention mechanism to encode the sequential data of battery capacity to capture the temporal features and a re-zero MLP-Mixer model to capture the high-level features. Additionally, we devise an ensemble predictor based on a Mixture-of-Experts (MoE) architecture to generate reliable RUL predictions. The experimental results on public datasets demonstrate that our proposed model significantly outperforms other existing methods, providing more reliable and precise RUL predictions while also accurately tracking the capacity degradation process. Our code and dataset are available at the website of github.

Keywords lithium-ion battery      remaining useful life      deep learning      MLP-Mixer      mixture-of-experts     
Corresponding Author(s): Junjie WANG,Maozu GUO   
Just Accepted Date: 20 July 2023   Issue Date: 21 September 2023
 Cite this article:   
Lingling ZHAO,Shitao SONG,Pengyan WANG, et al. A MLP-Mixer and mixture of expert model for remaining useful life prediction of lithium-ion batteries[J]. Front. Comput. Sci., 2024, 18(5): 185329.
 URL:  
https://academic.hep.com.cn/fcs/EN/10.1007/s11704-023-3277-4
https://academic.hep.com.cn/fcs/EN/Y2024/V18/I5/185329
Fig.1  Illustration of our proposed MMMe
Fig.2  An illustration of the MLP-mixer
Fig.3  Visualization of MoE predictor
Battery Discharge current (A) Rated capacity (Ah) Charing/discharge cut-off voltage (V) Minimal charge current (mA) Failure threshold (Ah)
B0005 2 2 4.2/2.7 20 1.4
B0006 2 2 4.2/2.5 20 1.4
B0007 2 2 4.2/2.3 20 1.4
B0018 2 2 4.2/2.5 20 1.4
Tab.1  Detailed information of NASA dataset
Battery Discharge current (A) Rated capacity (Ah) Charing/Discharge cut-off voltage (V) Minimal charge current (mA) Failure threshold (Ah)
CS2_35 1.1 1.1 4.2/2.7 50 0.77
CS2_36 1.1 1.1 4.2/2.7 50 0.77
CS2_37 1.1 1.1 4.2/2.7 50 0.77
CS2_38 1.1 1.1 4.2/2.7 50 0.77
Tab.2  Detailed information of CALCE dataset
Fig.4  NASA batteries capacity decay data
Fig.5  CALCE batteries capacity decay data
Parameters Settings
No. of GRU layer 2
Hidden dim of GRU 16
No. of the head of MHA 2
No. of Experts 32
No. of MLP-Mixer layer 2
Learning rate 1e–2
Early stopping patience 200
Max No. of training epochs 1000
Tab.3  Parameters used in MMMe
Methods NASA CALCE
RE MAE RMSE RE MAE RMSE
MLP 0.3851 0.1379 0.1541 0.4018 0.1557 0.2038
RNN 0.2851 0.0749 0.0848 0.1614 0.0938 0.1099
LSTM 0.2648 0.0829 0.0905 0.0902 0.0582 0.0736
GRU 0.3044 0.0806 0.0921 0.1319 0.0671 0.0946
Dual-LSTM 0.2557 0.0815 0.0879 0.0885 0.0636 0.0874
DeTransformer 0.2252 0.0713 0.0802 0.0764 0.0613 0.0705
MMMe 0.005 0.04 0.0515 0.0019 0.0229 0.0306
Tab.4  Performances of deep learning models in NASA and CALCE datasets
Fig.6  RUL prediction results of the proposed method for NASA dataset. (a) Battery B0005; (b) Battery B0006; (c) Battery B0007; (d) Battery B0018
Fig.7  RUL prediction results of the proposed method for CALCE dataset. (a) Battery CS2_35; (b) Battery CS2_36; (c) Battery CS2_37; (d) Battery CS2_38
Fig.8  The RE, RMSE, and MAE of MMMe with a different number of experts
Methods NASA CALCE
RE MAE RMSE RE MAE RMSE
BiGRU 0.3044 0.0806 0.0921 0.1319 0.0671 0.0946
BiGRU+MoE 0.021 0.065 0.081 0.111 0.068 0.095
BiGRU+Mixer-MLP+MoE 0.076 0.077 0.102 0.008 0.053 0.066
BiGRU+MHA+MoE 0.031 0.058 0.084 0.009 0.023 0.039
MMMe 0.005 0.04 0.0515 0.0019 0.0229 0.0306
Tab.5  Results of ablation experiments
  
  
  
  
  
  
1 X, Tang K, Liu K, Li W D, Widanage E, Kendrick F Gao . Recovering large-scale battery aging dataset with machine learning. Patterns, 2021, 2( 8): 100302
2 Z, Wang N, Liu Y Guo . Adaptive sliding window LSTM NN based RUL prediction for lithium-ion batteries integrating LTSA feature reconstruction. Neurocomputing, 2021, 466: 178–189
3 M F, Ge Y, Liu X, Jiang J Liu . A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement, 2021, 174: 109057
4 H, Rauf M, Khalid N Arshad . Machine learning in state of health and remaining useful life estimation: theoretical and technological development in battery degradation modelling. Renewable and Sustainable Energy Reviews, 2022, 156: 111903
5 Q, Zhai Z S Ye . RUL prediction of deteriorating products using an adaptive wiener process model. IEEE Transactions on Industrial Informatics, 2017, 13( 6): 2911–2921
6 Y, Wang J, Tian Z, Sun L, Wang R, Xu M, Li Z Chen . A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 2020, 131: 110015
7 Z, Deng L, Yang H, Deng Y, Cai D Li . Polynomial approximation pseudo-two-dimensional battery model for online application in embedded battery management system. Energy, 2018, 142: 838–850
8 L, Yang Y, Cai Y, Yang Z Deng . Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles. Applied Energy, 2020, 257: 114006
9 J, Son S, Zhou C, Sankavaram X, Du Y Zhang . Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter. Reliability Engineering & System Safety, 2016, 152: 38–50
10 X, Su S, Wang M, Pecht L, Zhao Z Ye . Interacting multiple model particle filter for prognostics of lithium-ion batteries. Microelectronics Reliability, 2017, 70: 59–69
11 J, Tian R, Xu Y, Wang Z Chen . Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries. Energy, 2021, 221: 119682
12 Y, Li K, Liu A M, Foley A, Zülke M, Berecibar E, Nanini-Maury Mierlo J, Van H E Hoster . Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review. Renewable and Sustainable Energy Reviews, 2019, 113: 109254
13 S, Li H, Fang B Shi . Remaining useful life estimation of lithium-ion battery based on interacting multiple model particle filter and support vector regression. Reliability Engineering & System Safety, 2021, 210: 107542
14 X, Shu G, Li J, Shen Z, Lei Z, Chen Y Liu . A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization. Energy, 2020, 204: 117957
15 Z, Liu Y, Cheng P, Wang Y, Yu Y Long . A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty. Neurocomputing, 2018, 305: 27–38
16 D, Shen L, Wu G, Kang Y, Guan Z Peng . A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current. Energy, 2021, 218: 119490
17 B, Yang R, Liu E Zio . Remaining useful life prediction based on a double-convolutional neural network architecture. IEEE Transactions on Industrial Electronics, 2019, 66( 12): 9521–9530
18 P, Ding X, Liu H, Li Z, Huang K, Zhang L, Shao O Abedinia . Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries. Renewable and Sustainable Energy Reviews, 2021, 148: 111287
19 Y, Zhang R, Xiong H, He M G Pecht . Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 2018, 67( 7): 5695–5705
20 S, Zhao C, Zhang Y Wang . Lithium-ion battery capacity and remaining useful life prediction using board learning system and long short-term memory neural network. Journal of Energy Storage, 2022, 52: 104901
21 D, Chen W, Hong X Zhou . Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access, 2022, 10: 19621–19628
22 L, Zheng Y, He X, Chen X Pu . Optimization of dilated convolution networks with application in remaining useful life prediction of induction motors. Measurement, 2022, 200: 111588
23 M, Ragab Z, Chen M, Wu C K, Kwoh R, Yan X Li . Attention-based sequence to sequence model for machine remaining useful life prediction. Neurocomputing, 2021, 466: 58–68
24 J Y, Wu M, Wu Z, Chen X L, Li R Yan . Degradation-aware remaining useful life prediction with LSTM autoencoder. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–10
25 R, Jin Z, Chen K, Wu M, Wu X, Li R Yan . Bi-LSTM-based two-stream network for machine remaining useful life prediction. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1–10
26 L, Xiao L, Zhang F, Niu X, Su W Song . RETRACTED: remaining useful life prediction of wind turbine generator based on 1D-CNN and Bi-LSTM. International Journal of Fatigue, 2022, 163: 107051
27 Ardeshiri R, Rouhi C Ma . Multivariate gated recurrent unit for battery remaining useful life prediction: a deep learning approach. International Journal of Energy Research, 2021, 45( 11): 16633–16648
28 Z, Chen M, Wu R, Zhao F, Guretno R, Yan X Li . Machine remaining useful life prediction via an attention-based deep learning approach. IEEE Transactions on Industrial Electronics, 2021, 68( 3): 2521–2531
29 I O, Tolstikhin N, Houlsby A, Kolesnikov L, Beyer X, Zhai T, Unterthiner J, Yung A, Steiner D, Keysers J, Uszkoreit M, Lucic A Dosovitskiy . MLP-Mixer: an all-MLP architecture for vision. In: Proceedings of the 35th International Conference on Neural Information Processing Systems. 2021
30 H, Touvron P, Bojanowski M, Caron M, Cord A, El-Nouby E, Grave G, Izacard A, Joulin G, Synnaeve J, Verbeek H Jegou . ResMLP: feedforward networks for image classification with data-efficient training. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45( 4): 5314–5321
31 Chen S, Xie E, Ge C, Chen R, Liang D, Luo P. CycleMLP: a MLP-like architecture for dense prediction. In: Proceedings of the 10th International Conference on Learning Representations. 2022
32 T, Yu X, Li Y, Cai M, Sun P Li . S2-MLP: spatial-shift MLP architecture for vision. In: Proceedings of 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2022, 3615−3624
33 R A, Jacobs M I, Jordan S J, Nowlan G E Hinton . Adaptive mixtures of local experts. Neural Computation, 1991, 3( 1): 79–87
34 H, Liu Z, Liu W, Jia X Lin . Remaining useful life prediction using a novel feature-attention-based end-to-end approach. IEEE Transactions on Industrial Informatics, 2021, 17( 2): 1197–1207
35 A, Vaswani N, Shazeer N, Parmar J, Uszkoreit L, Jones A N, Gomez Ł, Kaiser I Polosukhin . Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017, 6000−6010
36 Y, Wu W, Li Y, Wang K Zhang . Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter. IEEE Access, 2019, 7: 54843–54854
37 J, Liu A, Saxena K, Goebel B, Saha W Wang . An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In: Proceedings of Annual Conference of the Prognostics and Health Management Society. 2010
38 N, Williard W, He M, Osterman M Pecht . Comparative analysis of features for determining state of health in lithium-ion batteries. International Journal of Prognostics and Health Management, 2013, 4(1): 1−7
39 Z, Shi A Chehade . A dual-LSTM framework combining change point detection and remaining useful life prediction. Reliability Engineering & System Safety, 2021, 205: 107257
40 V M, Nagulapati H, Lee D, Jung B, Brigljevic Y, Choi H Lim . Capacity estimation of batteries: influence of training dataset size and diversity on data driven prognostic models. Reliability Engineering & System Safety, 2021, 216: 108048
[1] FCS-23277-OF-LZ_suppl_1 Download
[1] Enes DEDEOGLU, Himmet Toprak KESGIN, Mehmet Fatih AMASYALI. A robust optimization method for label noisy datasets based on adaptive threshold: Adaptive-k[J]. Front. Comput. Sci., 2024, 18(4): 184315-.
[2] Hengyu LIU, Tiancheng ZHANG, Fan LI, Minghe YU, Ge YU. A probabilistic generative model for tracking multi-knowledge concept mastery probability[J]. Front. Comput. Sci., 2024, 18(3): 183602-.
[3] Mingzhen LI, Changxi LIU, Jianjin LIAO, Xuegui ZHENG, Hailong YANG, Rujun SUN, Jun XU, Lin GAN, Guangwen YANG, Zhongzhi LUAN, Depei QIAN. Towards optimized tensor code generation for deep learning on sunway many-core processor[J]. Front. Comput. Sci., 2024, 18(2): 182101-.
[4] Mingzhi YUAN, Kexue FU, Zhihao LI, Manning WANG. Decoupled deep hough voting for point cloud registration[J]. Front. Comput. Sci., 2024, 18(2): 182703-.
[5] Hanadi AL-MEKHLAFI, Shiguang LIU. Single image super-resolution: a comprehensive review and recent insight[J]. Front. Comput. Sci., 2024, 18(1): 181702-.
[6] Yufei ZENG, Zhixin LI, Zhenbin CHEN, Huifang MA. Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network[J]. Front. Comput. Sci., 2023, 17(6): 176340-.
[7] Yamin HU, Hao JIANG, Zongyao HU. Measuring code maintainability with deep neural networks[J]. Front. Comput. Sci., 2023, 17(6): 176214-.
[8] Muazzam MAQSOOD, Sadaf YASMIN, Saira GILLANI, Maryam BUKHARI, Seungmin RHO, Sang-Soo YEO. An efficient deep learning-assisted person re-identification solution for intelligent video surveillance in smart cities[J]. Front. Comput. Sci., 2023, 17(4): 174329-.
[9] Tian WANG, Jiakun LI, Huai-Ning WU, Ce LI, Hichem SNOUSSI, Yang WU. ResLNet: deep residual LSTM network with longer input for action recognition[J]. Front. Comput. Sci., 2022, 16(6): 166334-.
[10] Donghong HAN, Yanru KONG, Jiayi HAN, Guoren WANG. A survey of music emotion recognition[J]. Front. Comput. Sci., 2022, 16(6): 166335-.
[11] Yi WEI, Mei XUE, Xin LIU, Pengxiang XU. Data fusing and joint training for learning with noisy labels[J]. Front. Comput. Sci., 2022, 16(6): 166338-.
[12] Pinzhuo TIAN, Yang GAO. Improving meta-learning model via meta-contrastive loss[J]. Front. Comput. Sci., 2022, 16(5): 165331-.
[13] Tian WANG, Shiye LEI, Youyou JIANG, Choi CHANG, Hichem SNOUSSI, Guangcun SHAN, Yao FU. Accelerating temporal action proposal generation via high performance computing[J]. Front. Comput. Sci., 2022, 16(4): 164317-.
[14] Kaimin WEI, Tianqi LI, Feiran HUANG, Jinpeng CHEN, Zefan HE. Cancer classification with data augmentation based on generative adversarial networks[J]. Front. Comput. Sci., 2022, 16(2): 162601-.
[15] Yu OU, Lang LI. Side-channel analysis attacks based on deep learning network[J]. Front. Comput. Sci., 2022, 16(2): 162303-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed