Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2016, Vol. 10 Issue (3): 425-431   https://doi.org/10.1007/s11705-016-1581-3
  本期目录
 
 
 
Synthesis of a cardanol-amine derivative using an ionic liquid catalyst
Atanu Biswas1,*(),Carlucio R. Alves2,Maria T. S. Trevisan3,Roseane L. E. da Silva3,Roselayne F. Furtado4,Zengshe Liu1,H. N. Cheng5,*()
1. USDA Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
2. Chemistry Department, State University of Ceará, Itaperi Campus, 60740-020, Fortaleza-CE, Brazil
3. Chemistry Department, Federal University of Ceará, Pici Campus, 60455-760, Fortaleza-CE, Brazil
4. Embrapa Tropical Agroindustry, Rua Dra. Sara Mesquita, Planalto Pici, 60511-110, Fortaleza-CE, Brazil
5. USDA Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA
 全文: PDF(240 KB)   HTML
文章导读  
摘要: 
关键词      
Abstract

Cardanol is a biobased raw material derived from cashew nut shell liquid. In order to extend its utility, new derivatives and additional applications are useful. In this work cardanol was first epoxidized, and a novel aniline derivative prepared from it under mild reaction conditions with the help of an ionic liquid catalyst. The reaction chemistry was studied by using nuclear magnetic resonance. The resulting aminohydrin adduct showed antioxidant property and should also be a useful synthon for further reactions. As an example, the aminohydrin was shown to undergo a condensation reaction with formaldehyde to form a prepolymer, which could be further reacted to form thermosetting resins.

Key wordscardanol    epoxidation    aminohydrin    aniline    ionic liquid    aniline-formaldehyde
收稿日期: 2016-03-19      出版日期: 2016-08-23
PACS:     
基金资助: 
Corresponding Author(s): Atanu Biswas,H. N. Cheng   
 引用本文:   
.  [J]. Frontiers of Chemical Science and Engineering, 2016, 10(3): 425-431.
Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-016-1581-3
https://academic.hep.com.cn/fcse/CN/Y2016/V10/I3/425
Fig.1  
Fig.2  
Sample Volume of 30% H2O2 /mL Reaction time at 55 °C /h Epoxidation /% (from NMR)
E1 0.38 7 30
E2 0.53 5 55
E3 0.80 5 80
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Balachandran V S, Jadhav S R, Vemula P K, John G. Recent advances in cardanol chemistry in a nutshell: From a nut to nanomaterials. Chemical Society Reviews, 2013, 42(2): 427–438
https://doi.org/10.1039/C2CS35344J
2 Mele G, Vasapollo G. Fine chemicals and new hybrid materials from cardanol. Mini-Reviews in Organic Chemistry, 2008, 5(3): 243–253
https://doi.org/10.2174/157019308785161611
3 Vasapollo G, Mele G, Del Sole R. Cardanol-based materials as natural precursors for olefin metathesis. Molecules (Basel, Switzerland), 2011, 16(12): 6871–6882
https://doi.org/10.3390/molecules16086871
4 Voirin C, Caillol S, Sadavarte N V, Tawade B V, Boutevin B, Wadgaonkar P P. Functionalization of cardanol: Towards biobased polymers and additives. Polymer Chemistry, 2014, 5(9): 3142–3162
https://doi.org/10.1039/C3PY01194A
5 Jaillet F, Darroman E, Ratsimihety A, Auvergne R, Boutevin B, Caillol S. New biobased epoxy materials from cardanol. European Journal of Lipid Science and Technology, 2014, 116(1): 63–73
https://doi.org/10.1002/ejlt.201300193
6 Kanehashi S, Yokoyama K, Masuda R, Kidesaki T, Nagai K, Miyakoshi T. Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. Journal of Applied Polymer Science, 2013, 130(4): 2468–2478
https://doi.org/10.1002/app.39382
7 Huang K, Zhang Y, Li M, Lian J, Yang X, Xia J. Preparation of a light color cardanol-based curing agent and epoxy resin composite: Cure-induced phase separation and its effect on properties. Progress in Organic Coatings, 2012, 74(1): 240–247
https://doi.org/10.1016/j.porgcoat.2011.12.015
8 Sultania M, Rai J, Srivastava D. Modeling and simulation of curing kinetics for the cardanol-based vinyl ester resin by means of non-isothermal DSC measurements. Materials Chemistry and Physics, 2012, 132(1): 180–186
https://doi.org/10.1016/j.matchemphys.2011.11.022
9 Suresh K I, Kishanprasad V S. Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Industrial & Engineering Chemistry Research, 2005, 44(13): 4504–4512
https://doi.org/10.1021/ie0488750
10 Kim Y H, An E S, Park S Y, Song B K. Enzymatic epoxidation and polymerization of cardanol obtained from a renewable resource and curing of epoxide-containing polycardanol. Journal of Molecular Catalysis. B, Enzymatic, 2007, 45(1-2): 39–44
https://doi.org/10.1016/j.molcatb.2006.11.004
11 Chen J, Nie X, Liu Z, Mi Z, Zhou Y. Synthesis and application of polyepoxide cardanol glycidyl ether as biobased polyepoxide reactive diluent for epoxy resin. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1164–1171
https://doi.org/10.1021/acssuschemeng.5b00095
12 Rao B S, Palanisamy A. Synthesis of biobased low temperature curable liquid epoxy, benzoxazine monomer system from caardanol: Thermal and viscoelastic properties. European Polymer Journal, 2013, 49(8): 2365–2376
https://doi.org/10.1016/j.eurpolymj.2013.05.029
13 Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 2008, 37(1): 123–150
https://doi.org/10.1039/B006677J
14 Chiappe C, Pieraccini D. Ionic liquids: Solvent properties and organic reactivity. Journal of Physical Organic Chemistry, 2005, 18(4): 275–297
https://doi.org/10.1002/poc.863
15 Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, 1999, 99(8): 2071–2084
https://doi.org/10.1021/cr980032t
16 Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos D S. Dissolution of wood in ionic liquids. Journal of Agricultural and Food Chemistry, 2007, 55(22): 9142–9148
https://doi.org/10.1021/jf071692e
17 Rogers R D, Seddon K R. Ionic liquids—Solvents of the future? Science, 2003, 302(5646): 792–793
https://doi.org/10.1126/science.1090313
18 Sheldon R. Catalytic reactions in ionic liquids. Chemical Communications, 2001, 23: 2399–2407
https://doi.org/10.1039/b107270f
19 Biswas A, Sharma B K, Doll K M, Erhan S Z, Willett J L, Cheng H N. Synthesis of an amine-oleate derivative using an ionic liquid catalyst. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8136–8141
https://doi.org/10.1021/jf901401s
20 Darroman E, Bonnot L, Auvergne R, Boutevin B, Caillol S. New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. European Journal of Lipid Science and Technology, 2015, 117(2): 178–189
https://doi.org/10.1002/ejlt.201400248
21 Bishop R R. The use of aniline-formaldehyde resins as curing agents for epoxide resins. Journal of Applied Chemistry, 1956, 6(6): 256–260
https://doi.org/10.1002/jctb.5010060605
22 Maity T, Samanta B C, Dalai S, Banthia A K. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Materials Science and Engineering, 2007, 464(1-2): 38–46
https://doi.org/10.1016/j.msea.2007.01.128
23 Chuang C, Chao L, Huang Y, Hsieh T, Chuang H, Lin S, Ho K. Synthesis and characterization of a novel proton-exchange membrane for fuel cells operating at high temperatures and low humidities. Journal of Applied Polymer Science, 2008, 107(6): 3917–3924
https://doi.org/10.1002/app.27437
24 Knop A, Pilato L A. Phenolic Resins, Chemistry, Applications and Performance, Future Directions. Berlin: Springer-Verlag, 1985
25 Gaca K Z, Parkinson J A, Lue L, Sefcik J. Equilibrium speciation in moderately concentrated formaldehyde-methanol-water solutions investigated using 13C and 1H nuclear magnetic resonance spectroscopy. Industrial & Engineering Chemistry Research, 2014, 53(22): 9262–9271
https://doi.org/10.1021/ie403252x
26 Tomita B, Hatono S. Urea-formaldehyde resins. III. Constitutional characterization by 13C Fourier transform NMR spectroscopy. Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16: 2509–2525
27 Mustata F, Bicu I. Epoxy aniline formaldehyde resins modified with resin acids. Polimery, 2001, 46: 534–539
28 Panahi H A, Zadeh M S, Tavangari S, Moniri E, Ghassemi J. Nickel adsorption from environmental samples by ion imprinted aniline-formaldehyde polymer. Iran Journal of Chemistry and Chemical Engineering, 2012, 31: 35–44
29 Kalal H S, Hoveidi H, Thagiof M, Pakizevand N, Almasian M R, Firoozzare M A. Pre-concentration and determination of platinum (IV) in water samples using chelating resin by inductively coupled plasma atomic emission spectroscopy (ICP-AES). International Journal of Environmental of Research, 2012, 6: 739–750
30 Kumar P A, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel. Journal of Hazardous Materials, 2007, 143(1-2): 24–32
https://doi.org/10.1016/j.jhazmat.2006.08.067
[1] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[2] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[3] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
[4] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[5] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
[6] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[7] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[8] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[9] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[10] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[11] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[14] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[15] .  [J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed