Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2017, Vol. 11 Issue (1): 107-116   https://doi.org/10.1007/s11705-017-1621-7
  本期目录
 
 
 
Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae
Ting Yuan1,Yakun Guo1,Junkai Dong1,Tianyi Li1,Tong Zhou1,Kaiwen Sun1,Mei Zhang2,Qingyu Wu1,Zhen Xie3,Yizhi Cai4,Limin Cao2,Junbiao Dai1()
1. MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
2. College of Life Sciences, Capital Normal University, Beijing 100048, China
3. MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, China
4. School of Biological Sciences, The King’s Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
 全文: PDF(451 KB)   HTML
文章导读  
摘要: 
关键词      
Abstract

Promoters are critical elements to control gene expression but could behave differently under various growth conditions. Here we report the construction of a genome-wide promoter library, in which each native promoter in Saccharomyces cerevisiae was cloned upstream of a yellow fluorescent protein (YFP) reporter gene. Nine libraries were arbitrarily defined and assembled in bacteria. The resulting pools of promoters could be prepared and transformed into a yeast strain either as centromeric plasmids or integrated into a genomic locus upon enzymatic treatment. Using fluorescence activated cell sorting, we classified the yeast strains based on YFP fluorescence intensity and arbitrarily divided the entire library into 12 bins, representing weak to strong promoters. Several strong promoters were identified from the most active bins and their activities were assayed under different growth conditions. Finally, these promoters were applied to drive the expression of genes in xylose utilization to improve fermentation efficiency. Together, this library could provide a quick solution to identify and utilize desired promoters under user-defined growth conditions.

Key wordssynthetic biology    yeast    promoter activity    metabolic engineering    xylose utilization
收稿日期: 2016-08-18      出版日期: 2017-03-17
PACS:     
基金资助: 
Corresponding Author(s): Junbiao Dai   
 引用本文:   
.  [J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 107-116.
Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1621-7
https://academic.hep.com.cn/fcse/CN/Y2017/V11/I1/107
Strains Transcription units (TUs) Promoter activity
YTY1 pPGK1-XI-tCYC1, pADH1-XK-tTEF2 Common
YTY2 pYHR135C-XI-tCYC1, pCYC1-XK-tTEF2 Weak
YTY3 pYHR020C-XI-tCYC1, pYIL069C-XK-tTEF2 Medium
YTY4 pYKL060C-XI-tCYC1, pYHR174W-XK-tTEF2 Strong
Tab.1  
Fig.1  
Bacterial library Promoter number BY4741 integration pools depth WXY15 integration pools depth
Library 1–4 2572 27.8 27.3
Library 5–9 3043 >50 24
Tab.2  
Fig.2  
Fig.3  
Yeast strain YPD Ethanol stress Acetic acid stress
BY4741 pYKL081W
pYPL081W
pYGL030W
pYJL159W
pYHR174W
pYFR049W
pYJL159W
pYPL081W
pYHR174W
pYKL096W-A
pYJR105W
pYBR072W
pYJL59W
pYHR174W
pYFR049W
pYDL229W
pYBR123C
pYBR118W
pYBR072W
WXY15 pYDR381W
pYBR072W
pYGL030W
pYJL159W
pYMR116C
pYGL030W
pYBR118W
pYHR174W
pYPR145W
pYDR381W
pYPL081W
pYKL060C
Tab.3  
Fig.4  
1 Lee M E, Aswani A, Han A S, Tomlin C J, Dueber J E. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Research, 2013, 41(22): 10668–10678
https://doi.org/10.1093/nar/gkt809
2 Paddon C J, Westfall P J, Pitera D J, Benjamin K, Fisher K, McPhee D, Leavell M D, Tai A, Main A, Eng D, High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528–532
https://doi.org/10.1038/nature12051
3 Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249
https://doi.org/10.1038/nbt.3063
4 Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A III, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345
https://doi.org/10.1038/nmeth.1318
5 Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11): e3647
https://doi.org/10.1371/journal.pone.0003647
6 Casini A, MacDonald J T, De Jonghe J, Christodoulou G, Freemont P S, Baldwin G S, Ellis T. One-pot DNA construction for synthetic biology: The modular overlap-directed assembly with linkers (MODAL) strategy. Nucleic Acids Research, 2014, 42(1): e7
https://doi.org/10.1093/nar/gkt915
7 Guo Y, Dong J, Zhou T, Auxillos J, Li T, Zhang W, Wang L, Shen Y, Luo Y, Zheng Y, YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Research, 2015, 43(13): e88
https://doi.org/10.1093/nar/gkv464
8 Lam F H, Ghaderi A, Fink G R, Stephanopoulos G. Biofuels. Engineering alcohol tolerance in yeast. Science, 2014, 346(6205): 71–75
https://doi.org/10.1126/science.1257859
9 Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnology, 2013, 13(1): 110–118
https://doi.org/10.1186/1472-6750-13-110
10 Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Frontiers in Bioengineering and Biotechnology, 2015, 3: 184–198
https://doi.org/10.3389/fbioe.2015.00184
11 Demeke M M, Dietz H, Li Y, Foulquie-Moreno M R, Mutturi S, Deprez S, Den Abt T, Bonini B M, Liden G, Dumortier F, Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 2013, 6(1): 89–112
https://doi.org/10.1186/1754-6834-6-89
12 Zhang M M, Zhao X Q, Cheng C, Bai F W. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnology Journal, 2015, 10(12): 1903–1911
https://doi.org/10.1002/biot.201500508
13 Cao L, Tang X, Zhang X, Zhang J, Tian X, Wang J, Xiong M, Xiao W. Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metabolic Engineering, 2014, 24: 150–159
https://doi.org/10.1016/j.ymben.2014.05.001
14 Smolke C D. Building outside of the box: iGEM and the biobricks foundation. Nature Biotechnology, 2009, 27(12): 1099–1102
https://doi.org/10.1038/nbt1209-1099
15 Zucca S, Pasotti L, Politi N, Cusella De Angelis M G, Magni P. A standard vector for the chromosomal integration and characterization of biobrick parts in Escherichia coli. Journal of Biological Engineering, 2013, 7(1): 12–24
https://doi.org/10.1186/1754-1611-7-12
16 Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, Levo M, Zeevi D, Keren L, Yakhini Z, Weinberger A, Segal E. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nature Biotechnology, 2012, 30(6): 521–530
https://doi.org/10.1038/nbt.2205
17 Solis-Escalante D, Kuijpers N G, van der Linden F H, Pronk J T, Daran J M, Daran-Lapujade P. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Research, 2014, 14(5): 741–754
https://doi.org/10.1111/1567-1364.12162
18 Plessis A, Perrin A, Haber J E, Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics, 1992, 130(3): 451–460
19 Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683
https://doi.org/10.1073/pnas.0504604102
20 Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, Promoters maintain their relative activity levels under different growth conditions. Molecular Systems Biology, 2013, 9(1): 701–717
https://doi.org/10.1038/msb.2013.59
21 Ho N W, Chen Z, Brainard A P, Sedlak M. Successful design and development of genetically engineered saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Advances in Biochemical Engineering/Biotechnology, 1999, 65: 163–192
https://doi.org/10.1007/3-540-49194-5_7
22 Ha S J, Galazka J M, Kim S R, Choi J H, Yang X, Seo J H, Glass N L, Cate J H, Jin Y S. Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(2): 504–509
https://doi.org/10.1073/pnas.1010456108
23 Wei N, Oh E J, Million G, Cate J H, Jin Y S. Simultaneous utilization of cellobiose, xylose, and Acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform. ACS Synthetic Biology, 2015, 4(6): 707–713
https://doi.org/10.1021/sb500364q
24 Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36): 12678–12683
https://doi.org/10.1073/pnas.0504604102
25 Curran K A, Crook N C, Karim A S, Gupta A, Wagman A M, Alper H S. Design of synthetic yeast promoters via tuning of nucleosome architecture. Nature Communications, 2014, 5: 4002–4021
https://doi.org/10.1038/ncomms5002
26 Redden H, Alper H S. The development and characterization of synthetic minimal yeast promoters. Nature Communications, 2015, 6: 7810–7818
https://doi.org/10.1038/ncomms8810
27 Rajkumar A S, Liu G, Bergenholm D, Arsovska D, Kristensen M, Nielsen J, Jensen M K, Keasling J D. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Research, 2016, 44(17): e136
https://doi.org/10.1093/nar/gkw553
28 Kuyper M, Hartog M M, Toirkens M J, Almering M J, Winkler A A, van Dijken J P, Pronk J T. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Research, 2005, 5(4-5): 399–409
https://doi.org/10.1016/j.femsyr.2004.09.010
29 van Maris A J, Winkler A A, Kuyper M, de Laat W T, van Dijken J P, Pronk J T. Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component. Advances in Biochemical Engineering/Biotechnology, 2007, 108: 179–204
https://doi.org/10.1007/10_2007_057
30 Zhou H, Cheng J S, Wang B L, Fink G R, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(6): 611–622
https://doi.org/10.1016/j.ymben.2012.07.011
[1] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[2] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
[3] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[4] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
[5] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[6] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[7] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[8] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[9] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[10] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[11] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[14] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[15] .  [J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed