Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

邮发代号 80-969

2019 Impact Factor: 3.552

Frontiers of Chemical Science and Engineering  2017, Vol. 11 Issue (1): 133-138   https://doi.org/10.1007/s11705-017-1637-z
  本期目录
 
 
 
Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization
Kata Kiss,Wei Ting Ng,Qingxin Li()
Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, Jurong Island 627833, Singapore
 全文: PDF(235 KB)   HTML
文章导读  
摘要: 
关键词      
Abstract

Rhamnolipids are a class of biosurfactants that have a great potential to be used in industries. Five proteins/enzymes, namely RhlA, RhlB, RhlC, RhlG and RhlI, are critical for the production of rhamnolipids in Pseudomonas aeruginosa. Four of the 5 proteins except RhlC were successfully over-expressed in E. coli and three of them (RhlA, RhlB and RhlI) were purified and obtained in milligram quantities. The purified proteins were shown to be folded in solution. Homology models were built for RhlA, RhlB and RhlI. These results lay a basis for further structural and functional characterization of these proteins in vitro to favor the construction of super strains for rhamnolipids production.

Key wordsrhamnolipids    Pseudomonas    RhlA    RhlB    RhlI    protein folding
收稿日期: 2016-09-11      出版日期: 2017-03-17
PACS:     
基金资助: 
Corresponding Author(s): Qingxin Li   
 引用本文:   
.  [J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 133-138.
Kata Kiss, Wei Ting Ng, Qingxin Li. Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
 链接本文:  
https://academic.hep.com.cn/fcse/CN/10.1007/s11705-017-1637-z
https://academic.hep.com.cn/fcse/CN/Y2017/V11/I1/133
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495–508
https://doi.org/10.1007/s002530051648
2 Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47–64
3 Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428–434
https://doi.org/10.1007/s00253-001-0924-1
4 Lovaglio R B, Silva V L, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33(8): 1715–1726
https://doi.org/10.1016/j.biotechadv.2015.09.002
5 Dobler L, Vilela L F, Almeida R V, Neves B C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016, 33(1): 123–135
https://doi.org/10.1016/j.nbt.2015.09.005
6 Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(14): 1522–1554
https://doi.org/10.1080/10643389.2014.955631
7 Henkel M, Müller M M, Kügler J H, Lovaglio R B, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8): 1207–1219
https://doi.org/10.1016/j.procbio.2012.04.018
8 Müller M M, Kügler J H, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—next generation surfactants? Journal of Biotechnology, 2012, 162(4): 366–380
https://doi.org/10.1016/j.jbiotec.2012.05.022
9 Wittgens A, Tiso T, Arndt T T, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, . Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10(80), doi: 10.1186/1475-2859-10-80
10 Banat I M, Satpute S K, Cameotra S S, Patil R, Nyayanit N V. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 2014, 5: 697
11 Ochsner U A, Fiechter A, Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry, 1994, 269(31): 19787–19795
12 Rahim R, Ochsner U A, Olvera C, Graninger M, Messner P, Lam J S, Soberon-Chavez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001, 40(3): 708–718
https://doi.org/10.1046/j.1365-2958.2001.02420.x
13 Zhu K, Rock C O. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. Journal of Bacteriology, 2008, 190(9): 3147–3154
https://doi.org/10.1128/JB.00080-08
14 Ochsner U A, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424–6428
https://doi.org/10.1073/pnas.92.14.6424
15 Ochsner U A, Koch A K, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176(7): 2044–2054
https://doi.org/10.1128/jb.176.7.2044-2054.1994
16 Parsek M R, Val D L, Hanzelka B L, Cronan J E Jr, Greenberg E P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360–4365
https://doi.org/10.1073/pnas.96.8.4360
17 Miller D J, Zhang Y M, Rock C O, White S W. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2006, 281(26): 18025–18032
https://doi.org/10.1074/jbc.M601687200
18 Jiang Y, Camara M, Chhabra S R, Hardie K R, Bycroft B W, Lazdunski A, Salmond G P, Stewart G S, Williams P. In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanoyl-L-homoserine lactone. Molecular Microbiology, 1998, 28(1): 193–203
https://doi.org/10.1046/j.1365-2958.1998.00789.x
19 Hoang T T, Ma Y, Stern R J, McNeil M R, Schweizer H P. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: Purification of mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene, 1999, 237(2): 361–371
https://doi.org/10.1016/S0378-1119(99)00331-5
20 Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(Web Server issue): W252–258
21 Shinohara Y, Miyanaga A, Kudo F, Eguchi T. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Letters, 2014, 588(6): 995–1000
https://doi.org/10.1016/j.febslet.2014.01.060
22 Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS Journal, 2012, 279(17): 3251–3263
https://doi.org/10.1111/j.1742-4658.2012.08711.x
23 Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon J S, . Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12089–12094
https://doi.org/10.1073/pnas.1103165108
24 Parsek M R, Schaefer A L, Greenberg E P. Analysis of random and site-directed mutations in rhII, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Molecular Microbiology, 1997, 26(2): 301–310
https://doi.org/10.1046/j.1365-2958.1997.5741935.x
[1] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[2] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[3] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[4] .  [J]. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
[5] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[6] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[7] .  [J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[8] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
[9] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[10] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[11] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[14] .  [J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[15] .  [J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed