Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 282-291    https://doi.org/10.1007/s11705-012-0901-5
RESEARCH ARTICLE
Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system
Lifeng YAN(), Yi ZHAO, Qing GU, Wan LI
Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
 Download: PDF(464 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cellulose samples with molecular weights ranging from 8.39 × 104 to 11.00 × 104 g/mol were obtained from wheat straw. The dewaxed wheat straw was pretreated with aqueous hydrochloric acid followed by delignification using an environmentally benign poly(ethyleneglycol)/salt aqueous biphasic system. The yield of cellulose was in the range of 48.9%–55.5% and the cellulose contained 1.2%–3.2% hemicelluloses, and 0.97%–3.47% lignin. All the isolated cellulose samples could be directly dissolved in a 6 wt-% NaOH/4 wt-% urea aqueous solution through a precooling-thawing process to form a homogenous solution. The separation process was investigated and the obtained cellulose and its solution were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray apparatus, and X-ray diffraction. The results revealed that aqueous soluble cellulose can be directly prepared from wheat straw by this method and this study opens a novel pathway to prepare cellulosic materials from agricultural waste.

Keywords cellulose      straw      separation      aqueous solution     
Corresponding Author(s): YAN Lifeng,Email:lfyan@ustc.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Yi ZHAO,Qing GU,Wan LI, et al. Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system[J]. Front Chem Sci Eng, 2012, 6(3): 282-291.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-0901-5
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/282
Fig.1  
Fig.2  Photos of the NaOH/urea aqueous cellulose solutions of A at different concentrations. (a) 8.3 × 10 g/mL; (b, c) 2.09 × 10 g/mL; (d) 3.5 × 10 g/mL; (e) 2.1 × 10 g/mL; (f) after adding 1.0 mL HCl (1.0 wt-%) aqueous solution into the solution as shown in (e)
Fig.3  Dependence of [] on the concentration of cellulose for sample A in NaOH/urea aqueous solution at 25°C
Sample No.[η] /(g·mL-1)k'Mη /( × 104, g·mol-1)Yield /%
A1252.410.7378.3955.51
A2270.550.7319.1449.77
A3280.630.9079.5848.88
A4257.490.7498.6053.65
A5288.120.8379.8752.14
B1309.180.89410.7651.45
C1313.550.93610.9554.28
D1314.690.93511.0050.63
Tab.1  The intrinsic viscosity ([]), Huggins constant ('), viscosity-average molecular weight () and the yield of the eight cellulose samples
Fig.4  UV-Vis absorption spectra of acidic KMnO aqueous solution. (1) before and after reaction with cellulose samples; (2) A; (3) A; (4) A; (5) A; (6) A; (7) untreated wheat straw
Sample No.Kappa numberRelative lignin content /%Absolute lignin content /%
A10.1496.291.08
A20.1345.670.97
A30.2058.651.49
A40.24710.421.79
A50.25710.821.86
B10.27112.702.18
C10.36717.202.96
D10.43020.203.47
Untreated wheat straw2.370100.0017.20
Tab.2  The kappa number and the lignin content (%) of cellulose samples and untreated wheat straw
Fig.5  The linear relationship between the concentration of HCl and the relative lignin content of cellulose samples A, B, C and D
Sugars /%Cellulose samples
A1A2A3A4A5B1C1D1
Rha.Not detected
Ara.0.930.460.870.830.571.000.590.35
Xyl.0.540.340.340.350.380.480.640.42
Man.1.540.491.991.580.710.530.710.51
Glu.96.9998.7096.8097.2498.3597.9998.0698.72
Gla.Not detected
Tab.3  The neutral sugar composition (%) of the eight cellulose samples
Fig.6  FT-IR spectra of (1) untreated wheat straw, (2) residue A after treatment with 8 mol·L aqueous HCl at 55°C for 3 h, (3) cellulose sample A, (4) regenerated cellulose and (5) microcrystalline cellulose
Fig.7  XRD patterns of (1) cellulose sample A, (2) microcrystalline cellulose and (3) regenerated cellulose
Fig.8  SEM image of (a) untreated wheat straw powder, (b) residue A and (c) a typical cellulose microfiber of cellulose sample A
Fig.9  POM image of (a) the cellulose solution of sample A in NaOH/urea aqueous solution and (b) SEM image of the cellulose aggregates formed by depositing the cellulose solution onto freshly cleaved mica
Fig.10  SEM image of the cellulose regenerated from its NaOH/urea aqueous solution by adding dilute HCl aqueous solution
1 Huber G W, Corma A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition , 2007, 46(38): 7184-7201
doi: 10.1002/anie.200604504 pmid:17610226
2 Chheda J N, Huber G W, Dumesic J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition , 2007, 46(38): 7164-7183
doi: 10.1002/anie.200604274 pmid:17659519
3 Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews , 2007, 107(6): 2411-2502
doi: 10.1021/cr050989d pmid:17535020
4 Metzger J O. Production of liquid hydrocarbons from biomass. Angewandte Chemie International Edition , 2006, 45(5): 696-698
doi: 10.1002/anie.200502895 pmid:16374789
5 Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. The path forward for biofuels and biomaterials. Science , 2006, 311(5760): 484-489
doi: 10.1126/science.1114736 pmid:16439654
6 Goodger E M. Hydrocarbon fuels: production, properties and performance of liquids and gases. London: Macmillan, 1976, 4-16
7 Nishio Y. Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Advances in Polymer Science , 2006, 205(9): 97-151
doi: 10.1007/12_095
8 Heinze T, Liebert T, Heublein B, Hornig S. Functional polymers based on dextran. Advances in Polymer Science , 2006, 205(9): 199-291
doi: 10.1007/12_100
9 Klemm D, Schumann D, Kramer F, He?ler N, Hornung M, Schmauder H P, Marsch S. Nanocelluloses as innovative polymers in research and application. Advances in Polymer Science , 2006, 205(9): 49-96
doi: 10.1007/12_097
10 Schaible D, Sherwood B. Treatment of pulp to produce microcrystalline cellulose. US20050145351A1, 2005
11 Zhang Y, Lu X, Pizzi A, Delmotte L. Wheat straw particleboard bonding improvements by enzyme pretreatment. European Journal of Wood and Wood Products , 2003, 61(1): 49-54
doi: 10.1007/s00107-002-0349-2
12 Avella M, Martuscelli E, Pascucci B, Raimo M, Focher B, Marzetti A. A new class of biodegradable materials—poly-3-hydroxy-butyrate steam exploded straw fiber composites. 1. Thermal and impact behavior. Journal of Applied Polymer Science , 1993, 49(12): 2091-2103
doi: 10.1002/app.1993.070491205
13 Hornsby P R, Hinrichsen E, Tarverdi K. Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres. 1. Fibre characterization. Journal of Materials Science , 1997, 32(2): 443-449
doi: 10.1023/A:1018521920738
14 Chen J, Spear S K, Huddleston J G, Rogers R D. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry , 2005, 7(2): 64-82
doi: 10.1039/b413546f
15 Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology , 2005, 23(1): 22-27
doi: 10.1016/j.tibtech.2004.11.002 pmid:15629854
16 Diaz M J, Eugenio M E, Lopez F, Alaejos J. Paper from olive tree residues. Industrial Crops and Products , 2005, 21(2): 211-221
doi: 10.1016/j.indcrop.2004.04.009
17 Yan L F, Li W, Yang J L, Zhu Q S. Direct visualization of straw cell walls by AFM. Macromolecular Bioscience , 2004, 4(2): 112-118
doi: 10.1002/mabi.200300032 pmid:15468201
18 Chakar F S, Ragauskas A J. Review of current and future softwood kraft lignin process chemistry. Industrial Crops and Products , 2004, 20(2): 131-141
doi: 10.1016/j.indcrop.2004.04.016
19 Smook G A, ed. Handbook for Pulp & Paper Technologists. 2nd ed. Vancouver: Angus Wilde Publications , 1992, 22-58
20 Vincent J F V. From cellulose to cell. Journal of Experimental Biology , 1999, 202(Pt 23): 3263-3268
pmid:10562507
21 Sun R C, Fang J M, Tomkinson J, Geng Z C, Liu J C. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood. Carbohydrate Polymers , 2001, 44(1): 29-39
doi: 10.1016/S0144-8617(00)00196-X
22 Herrera A, Tellez-Luis S J, Gonzalez-Cabriales J J, Ramirez J A, Vazquez M. Effect of the hydrochloric acid concentration on the hydrolysis of sorghum straw at atmospheric pressure. Journal of Food Engineering , 2004, 63(1): 103-109
doi: 10.1016/S0260-8774(03)00288-7
23 Sepulveda-Huerta E, Tellez-Luis S J, Bocanegra-Garcia V, Ramirez J A, Vazquez M. Production of detoxified sorghum straw hydrolysates for fermentative purposes. Journal of the Science of Food and Agriculture , 2006, 86(15): 2579-2586
doi: 10.1002/jsfa.2651
24 Aguilar R, Ramirez J A, Garrote G, Vazquez M. Kinetic study of the acid hydrolysis of sugar cane bagasse. Journal of Food Engineering , 2002, 55(4): 309-318
doi: 10.1016/S0260-8774(02)00106-1
25 Tellez-Luis S J, Uresti R M, Ramirez J A, Vazquez M. Low-salt restructured fish products using microbial transglutaminase as binding agent. Journal of the Science of Food and Agriculture , 2002, 82(9): 953-959
doi: 10.1002/jsfa.1132
26 Herrera A, Tellez-Luis S J, Ramirez J A, Vazquez M. Production of xylose from sorghum straw using hydrochloric acid. Journal of Cereal Science , 2003, 37(3): 267-274
doi: 10.1006/jcrs.2002.0510
27 Gámez S, Gonzalez-Cabriales J J, Ramirez J A, Garrote G, Vazquez M. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering , 2006, 74(1): 78-88
doi: 10.1016/j.jfoodeng.2005.02.005
28 Ruan D, Zhang L N, Lue A, Zhou J P, Chen H, Chen X M, Chu B, Kondo T. A rapid process for producing cellulose multi-filament fibers from a NaOH/thiourea solvent system. Macromolecular Rapid Communications , 2006, 27(17): 1495-1500
doi: 10.1002/marc.200600232
29 Pye E K, Lora J H. The alcell process—a proven alternative to Kraft pulping. Tappi Journal , 1991, 74(3): 113-118
30 Green R P, Hough G, eds. Chemical Recovery in the Alkaline Pulping Processes Revised Edition. Atlanta: Tappi Press, 1992, 1-35
31 Paszner L, Cho H J. Organosolv pulping—acidic catalysis options and their effect on fiber quality and delignification. Tappi Journal , 1989, 72(2): 135-142
32 Mcdonough T J. The chemistry of organosolv delignification. Tappi Journal , 1993, 76(8): 186-193
33 Guo Z, Li M, Willauer H D, Huddleston J G, April G C, Rogers R D. Evaluation of polymer-based aqueous biphasic systems as improvement for the hardwood alkaline pulping process. Industrial & Engineering Chemistry Research , 2002, 41(10): 2535-2542
doi: 10.1021/ie0104058
34 Zhang L N, Ruan D, Gao S J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Pol Phys , 2002, 40(14): 1521-1529
doi: 10.1002/polb.10215
35 Cai J, Zhang L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromolecular Bioscience , 2005, 5(6): 539-548
doi: 10.1002/mabi.200400222 pmid:15954076
36 Chai X S, Zhu J Y. Method for rapidly determining a pulp kappa number using spectrophotometry. US6475339B1, 2002
37 Togrul H, Arslan N. Flow properties of sugar beet pulp cellulose and intrinsic viscosity-molecular weight relationship. Carbohydrate Polymers , 2003, 54(1): 63-71
doi: 10.1016/S0144-8617(03)00146-2
38 Johnston H K, Sourirajan S. Viscosity-temperature relationships for cellulose acetate-acetone solutions. Journal of Applied Polymer Science , 1973, 17(12): 3717-3726
doi: 10.1002/app.1973.070171213
39 Zhou J P, Zhang L, Deng Q H, Wu X J. Synthesis and characterization of cellulose derivatives prepared in NaOH/urea aqueous solutions. Journal of Polymer Science Part A: Polymer Chemistry , 2004, 42(23): 5911-5920
doi: 10.1002/pola.20431
40 Roberts K. Structures at the plant cell surface. Current Opinion in Cell Biology , 1990, 2(5): 920-928
doi: 10.1016/0955-0674(90)90093-T pmid:2083091
41 Ristolainen M, Alen R, Malkavaara P, Pere J. Reflectance FTIR microspectroscopy for studying effect of xylan removal on unbleached and bleached birch Kraft pulps. Holzforschung , 2002, 56(5): 513-521
doi: 10.1515/HF.2002.079
42 Xiao B, Sun X F, Sun R C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polymer Degradation & Stability , 2001, 74(2): 307-319
doi: 10.1016/S0141-3910(01)00163-X
43 Sun R, Sun X F, Liu G Q, Fowler P, Tomkinson J. Structural and physicochemical characterization of hemicelluloses isolated by alkaline peroxide from barley straw. Polymer International , 2002, 51(2): 117-124
doi: 10.1002/pi.815
44 Sun X F, Sun R C, Su Y Q, Sun J X. Comparative study of crude and purified cellulose from wheat straw. Journal of Agricultural and Food Chemistry , 2004, 52(4): 839-847
doi: 10.1021/jf0349230 pmid:14969539
45 Kaplan D L, ed. Biopolymers from Renewable Resources. 1st ed. Heidelberg: Springer-Verlag Berlin Heidelberg, 1998, 3-27
[1] Huaiwei Shi, Teng Zhou. Computational design of heterogeneous catalysts and gas separation materials for advanced chemical processing[J]. Front. Chem. Sci. Eng., 2021, 15(1): 49-59.
[2] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[3] Hongzhe Hou, Yiqing Luo. A novel method for generating distillation configurations[J]. Front. Chem. Sci. Eng., 2020, 14(5): 834-846.
[4] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[5] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[6] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[7] Xin Gao, Dandan Shu, Xingang Li, Hong Li. Improved film evaporator for mechanistic understanding of microwave-induced separation process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 759-771.
[8] Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals[J]. Front. Chem. Sci. Eng., 2019, 13(4): 718-726.
[9] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[10] Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
[11] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[12] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[13] Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
[14] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
[15] Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate[J]. Front. Chem. Sci. Eng., 2018, 12(1): 194-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed