|
|
Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances |
Huan GU1, Dacheng REN1,2( ) |
1. Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA; 2. Department of Civil and Environmental Engineering, Department of Biology, Syracuse University, Syracuse, NY 13244, USA |
|
|
Abstract Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.
|
Keywords
surface engineering
materials
bacterial adhesion
biofilm
control
review
|
Corresponding Author(s):
REN Dacheng,Email:dren@syr.edu
|
Issue Date: 05 March 2014
|
|
1 |
Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases , 2001, 33(8): 1387–1392 doi: 10.1086/322972
|
2 |
Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley , 2000: 1–12
|
3 |
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials , 2011, 23(6): 690–718 doi: 10.1002/adma.201001215
|
4 |
Davey M E, O'Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews , 2000, 64(4): 847–867 doi: 10.1128/MMBR.64.4.847-867.2000
|
5 |
Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases , 2002, 8(9): 881–890 doi: 10.3201/eid0809.020063
|
6 |
Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews , 2002, 15(2): 155–166 doi: 10.1128/CMR.15.2.155-166.2002
|
7 |
Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology , 2002, 56(1): 187–209 doi: 10.1146/annurev.micro.56.012302.160705
|
8 |
Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology , 2005, 156(5–6): 626–633 doi: 10.1016/j.resmic.2005.02.005
|
9 |
Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature , 1995, 373(6510): 164–167 doi: 10.1038/373164a0
|
10 |
Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology , 2004, 53(5): 1545–1557 doi: 10.1111/j.1365-2958.2004.04226.x
|
11 |
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews , 2009, 73(2): 310–347 doi: 10.1128/MMBR.00041-08
|
12 |
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology , 2007, 34(9): 577–588 doi: 10.1007/s10295-007-0234-4
|
13 |
Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology , 1971, 68(3): 337–348 doi: 10.1099/00221287-68-3-337
|
14 |
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE , 2012, 7(10): e46718 doi: 10.1371/journal.pone.0046718
|
15 |
Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society , 2011, 36(5): 347–355
|
16 |
Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology , 2010, 59(3): 253–268
|
17 |
Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering , 2008, 10(1): 145–167 doi: 10.1146/annurev.bioeng.10.061807.160536
|
18 |
Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens , 2009, 5(3): e1000354 doi: 10.1371/journal.ppat.1000354
|
19 |
Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology , 2005, 71(1): 247–254 doi: 10.1128/AEM.71.1.247-254.2005
|
20 |
Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology , 2000, 2(4): 450–464 doi: 10.1046/j.1462-2920.2000.00128.x
|
21 |
Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology , 2003, 50(1): 101–104 doi: 10.1046/j.1365-2958.2003.03688.x
|
22 |
Tischler A D, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology , 2004, 53(3): 857–869 doi: 10.1111/j.1365-2958.2004.04155.x
|
23 |
Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science , 2012, 337(6091): 236–239 doi: 10.1126/science.1222981
|
24 |
Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America , 2005, 102(31): 11076–11081 doi: 10.1073/pnas.0504266102
|
25 |
Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology , 2006, 188(1): 305–316 doi: 10.1128/JB.188.1.305-316.2006
|
26 |
Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology , 2004, 186(9): 2724–2734 doi: 10.1128/JB.186.9.2724-2734.2004
|
27 |
Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology , 2002, 184(1): 290–301 doi: 10.1128/JB.184.1.290-301.2002
|
28 |
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology , 2001, 183(9): 2888–2896 doi: 10.1128/JB.183.9.2888-2896.2001
|
29 |
Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology . Berlin: Springer, 2013, 217–223
|
30 |
Ghigo J M. Natural conjugative plasmids induce bacterial biofilm development. Nature , 2001, 412(6845): 442–445 doi: 10.1038/35086581
|
31 |
Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology , 1998, 30(2): 285–293 doi: 10.1046/j.1365-2958.1998.01061.x
|
32 |
Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology , 2003, 48(6): 1511–1524 doi: 10.1046/j.1365-2958.2003.03525.x
|
33 |
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science , 2002, 295(5559): 1487 doi: 10.1126/science.295.5559.1487
|
34 |
An Y H, Friedman R J. An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research , 1998, 43(3): 338–348 doi: 10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
|
35 |
MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A , 2006, 78(4): 836–842 doi: 10.1002/jbm.a.30905
|
36 |
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology , 2005, 187(24): 8237–8246 doi: 10.1128/JB.187.24.8237-8246.2005
|
37 |
Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews , 2000, 24(5): 661–671 doi: 10.1111/j.1574-6976.2000.tb00565.x
|
38 |
Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology , 2008, 6(3): 199–210 doi: 10.1038/nrmicro1838
|
39 |
Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology , 2007, 5(3): 209–218 doi: 10.1038/nrmicro1616
|
40 |
O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology , 1998, 30(2): 295–304 doi: 10.1046/j.1365-2958.1998.01062.x
|
41 |
Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology , 2002, 68(4): 2008–2017 doi: 10.1128/AEM.68.4.2008-2017.2002
|
42 |
Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology , 2003, 48(4): 933–946 doi: 10.1046/j.1365-2958.2003.03490.x
|
43 |
Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters , 2002, 211(1): 105–110 doi: 10.1111/j.1574-6968.2002.tb11210.x
|
44 |
Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology , 2003, 48(1): 253–267 doi: 10.1046/j.1365-2958.2003.03432.x
|
45 |
Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications , 2010, 401(4): 521–526 doi: 10.1016/j.bbrc.2010.09.080
|
46 |
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science , 1998, 280(5361): 295–298 doi: 10.1126/science.280.5361.295
|
47 |
Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science , 2006, 313(5785): 337–341 doi: 10.1126/science.1126590
|
48 |
Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano , 2010, 4(10): 5539–5550 doi: 10.1021/nn101793u
|
49 |
Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature , 1999, 398(6724): 223–226 doi: 10.1038/18410
|
50 |
Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology , 2010, 6(1): 41–45 doi: 10.1038/nchembio.264
|
51 |
Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology , 2013, 11(5): 337–348 doi: 10.1038/nrmicro3010
|
52 |
Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials , 2006, 27(16): 3044–3063 doi: 10.1016/j.biomaterials.2005.12.024
|
53 |
Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir , 2009, 25(8): 4615–4620 doi: 10.1021/la8037318
|
54 |
Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters , 2005, 5(9): 1819–1823 doi: 10.1021/nl0507360
|
55 |
Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters , 2010, 10(9): 3717–3721 doi: 10.1021/nl102290k
|
56 |
Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics , 2011, 5(2): 024114–024117 doi: 10.1063/1.3605508
|
57 |
Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry , 2005, 77(17): 5628–5634 doi: 10.1021/ac0505977
|
58 |
Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry , 2008, 390(3): 801–808 doi: 10.1007/s00216-007-1436-3
|
59 |
Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry , 2006, 78(14): 4925–4930 doi: 10.1021/ac060541s
|
60 |
Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines , 2013, 4(4): 357–369 doi: 10.3390/mi4040357
|
61 |
Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science , 2004, 305(5690): 1622–1625 doi: 10.1126/science.1099390
|
62 |
Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition , 2009, 48(32): 5908–5911 doi: 10.1002/anie.200901550
|
63 |
Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip , 2012, 12(9): 1629–1637 doi: 10.1039/c2lc21284f
|
64 |
Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip , 2009, 9(1): 44–49 doi: 10.1039/b809670h
|
65 |
Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America , 2012, 109(20): 7665–7670 doi: 10.1073/pnas.1106752109
|
66 |
Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences , 2013, 14(5): 10570–10581 doi: 10.3390/ijms140510570
|
67 |
Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid , 2009, 7(6): 829–839 doi: 10.1007/s10404-009-0441-6
|
68 |
Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology , 2011, 6(3): 260–266 doi: 10.1021/cb100336p
|
69 |
Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials , 2003, 24(11): 1959–1967 doi: 10.1016/S0142-9612(02)00565-3
|
70 |
Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society , 2003, 125(47): 14613–14619 doi: 10.1021/ja0354566
|
71 |
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters , 2001, 86(18): 4163–4166 doi: 10.1103/PhysRevLett.86.4163
|
72 |
Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip , 2009, 9(13): 1850–1858 doi: 10.1039/b902504a
|
73 |
Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters , 2006, 88(2): 024104-1–024104-3 doi: 10.1063/1.2164911
|
74 |
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry , 2010, 82(8): 3183–3190 doi: 10.1021/ac902683t
|
75 |
Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir , 2005, 21(14): 6436–6442 doi: 10.1021/la047173c
|
76 |
Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A , 2009, 91(4): 1202–1209 doi: 10.1002/jbm.a.32312
|
77 |
Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One , 2007, 2(7): e663-1–e663-7
|
78 |
Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science , 2011, 13(2): 190–195 doi: 10.1021/co100061c
|
79 |
Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials , 2011, 32(10): 2500–2507 doi: 10.1016/j.biomaterials.2010.12.014
|
80 |
Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society , 2007, 129(7): 1904–1905 doi: 10.1021/ja068390y
|
81 |
Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio , 2010, 1(4): e00202–00210
|
82 |
Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110(46): 18380–18385 doi: 10.1073/pnas.1309729110
|
83 |
Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society , 2011, 133(15): 5966–5975 doi: 10.1021/ja111131f
|
84 |
Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip , 2009, 9(7): 925–934 doi: 10.1039/b810157d
|
85 |
Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology , 2012, 9(2): 026007–026010 doi: 10.1088/1478-3975/9/2/026007
|
86 |
Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society , 2005, 127(30): 10707–10711 doi: 10.1021/ja052211f
|
87 |
Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(46): 16104–16108 doi: 10.1073/pnas.0407204101
|
88 |
Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(26): 8850–8854 doi: 10.1073/pnas.0709571105
|
89 |
Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology , 2005, 187(2): 554–566 doi: 10.1128/JB.187.2.554-566.2005
|
90 |
Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society , 2012, 134(12): 5618–5626 doi: 10.1021/ja211593q
|
91 |
Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry , 2005, 381(3): 591–600 doi: 10.1007/s00216-004-2847-z
|
92 |
Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials , 2004, 25(7–8): 1349–1353 doi: 10.1016/j.biomaterials.2003.08.017
|
93 |
Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology , 2007, 73(13): 4300–4307 doi: 10.1128/AEM.02633-06
|
94 |
St John P M, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry , 1998, 70(6): 1108–1111 doi: 10.1021/ac9711302
|
95 |
Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical , 2000, 70(1–3): 232–242 doi: 10.1016/S0925-4005(00)00574-8
|
96 |
Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir , 2003, 19(2): 436–439 doi: 10.1021/la026365+
|
97 |
Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices , 2004, 6(3): 223–229 doi: 10.1023/B:BMMD.0000042052.47444.9a
|
98 |
Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir , 2012, 28(4): 2131–2136 doi: 10.1021/la2041967
|
99 |
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews , 2005, 105(4): 1103–1169 doi: 10.1021/cr0300789
|
100 |
Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir , 2002, 18(25): 9914–9917 doi: 10.1021/la020664h
|
101 |
Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small , 2005, 1(4): 445–451 doi: 10.1002/smll.200400072
|
102 |
Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications , 2009, 10: 1207–1209 doi: 10.1039/b822197a
|
103 |
Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir , 2013, 29(35): 11145–11153 doi: 10.1021/la402608z
|
104 |
Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry , 2009, 19(23): 3819–3831 doi: 10.1039/b818698g
|
105 |
Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science , 2012, 370(1967): 2381–2417
|
106 |
Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science , 2013, 402: 1–18 doi: 10.1016/j.jcis.2013.03.041
|
107 |
Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials , 2012, 24(27): 3697–3700 doi: 10.1002/adma.201201037
|
108 |
Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology , 2010, 26(1): 20–26 doi: 10.1016/S1005-0302(10)60003-5
|
109 |
Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films , 2005, 472(1–2): 37–43 doi: 10.1016/j.tsf.2004.06.087
|
110 |
Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir , 2009, 25(5): 3260–3263 doi: 10.1021/la8040715
|
111 |
Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir , 2007, 23(13): 7293–7298 doi: 10.1021/la070159q
|
112 |
Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science , 2009, 255(22): 9244–9247 doi: 10.1016/j.apsusc.2009.07.010
|
113 |
Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology , 2008, 22(15): 1869–1881 doi: 10.1163/156856108X320023
|
114 |
Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B , 2000, 104(37): 8836–8840 doi: 10.1021/jp0000174
|
115 |
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta , 1997, 202(1): 1–8 doi: 10.1007/s004250050096
|
116 |
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology , 2011, 2: 152–161 doi: 10.3762/bjnano.2.19
|
117 |
Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir , 2006, 22(7): 2966–2967 doi: 10.1021/la0532149
|
118 |
Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir , 2004, 20(9): 3517–3519 doi: 10.1021/la036369u
|
119 |
Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry , 2011, 21(41): 16304–16322 doi: 10.1039/c1jm12523k
|
120 |
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature , 2011, 477(7365): 443–447 doi: 10.1038/nature10447
|
121 |
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research , 2012, 42(1): 231–263 doi: 10.1146/annurev-matsci-070511-155046
|
122 |
Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances , 2013, 3(3): 671–690 doi: 10.1039/c2ra21260a
|
123 |
Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research , 2012, 42(1): 211–229 doi: 10.1146/annurev-matsci-070511-155012
|
124 |
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling , 2006, 22(5): 339–360 doi: 10.1080/08927010600980223
|
125 |
Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials , 2012, 24(5): 870–880 doi: 10.1021/cm2007044
|
126 |
Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films , 2011, 519(11): 3641–3646 doi: 10.1016/j.tsf.2011.01.347
|
127 |
Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science. , 2012, 5(6): 7491–7507 doi: 10.1039/c2ee03390a
|
128 |
Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances , 2012, 2(5): 2067–2072 doi: 10.1039/c2ra00921h
|
129 |
Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces , 2012, 4(2): 1093–1102 doi: 10.1021/am201721e
|
130 |
Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces , 2013, 5(11): 4753–4759 doi: 10.1021/am400002k
|
131 |
Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research , 2001, 58(1): 97–101 doi: 10.1002/1097-4636(2001)58:1<97::AID-JBM140>3.0.CO;2-8
|
132 |
Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology , 2008, 3(1): 41–45 doi: 10.1038/nnano.2007.386
|
133 |
Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases , 2007, 2(2): 89–94 doi: 10.1116/1.2751405
|
134 |
Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies-Correlating wettability with cell attachment. Biofouling , 2006, 22(1): 1–11 doi: 10.1080/08927010500484854
|
135 |
Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling , 2007, 23(1): 55–62 doi: 10.1080/08927010601136957
|
136 |
He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature , 2012, 487(7406): 214–218 doi: 10.1038/nature11223
|
137 |
Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials , 2010, 9(2): 101–113 doi: 10.1038/nmat2614
|
138 |
Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science , 2003, 299(5605): 371–374 doi: 10.1126/science.1078933
|
139 |
Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society , 2005, 912: 1
|
140 |
Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling , 2010, 26(1): 111–118 doi: 10.1080/08927010903383455
|
141 |
Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology , 1999, 65(4): 1603–1609
|
142 |
Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology , 1998, 20: 121–125 doi: 10.1038/sj.jim.2900490
|
143 |
Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly(N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir , 2001, 17(9): 2552–2555 doi: 10.1021/la001257d
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|