Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 20-33    https://doi.org/10.1007/s11705-014-1412-3
REVIEW ARTICLE
Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances
Huan GU1, Dacheng REN1,2()
1. Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA; 2. Department of Civil and Environmental Engineering, Department of Biology, Syracuse University, Syracuse, NY 13244, USA
 Download: PDF(920 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.

Keywords surface engineering      materials      bacterial adhesion      biofilm      control      review     
Corresponding Author(s): REN Dacheng,Email:dren@syr.edu   
Issue Date: 05 March 2014
 Cite this article:   
Huan GU,Dacheng REN. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances[J]. Front Chem Sci Eng, 2014, 8(1): 20-33.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1412-3
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/20
Fig.1  Cell confinement using lipid-silica structures. (A) Schematic description of the cell-directed integration of microbes in lipid templated silica films. The insert image (a5) is an atomic force microscopy (AFM) image of a cell encapsulated in a lipid-silica shell. Reproduced with permission from Ref []. (B) Single cells in lipid-silica droplets on glass surfaces. b1) Schematic description of a cell incorporated in an endosome-like lipid vesicle within a lipid-silica droplet on glass surface. b2) Scanning electron microscopy (SEM) image of the lipid-silica structure. b3 and b4) Left: plan-view optical image of individual cells in droplets. Right top: different interference contract (DIC) image of the confined cells. Right center: red fluorescence image of a stained cell. Right bottom: green fluorescence image of lipid on cell surface labeled with 7-nitro-2,1,3-benzoxadiazol-4-yl (NBD) (b3); image of localized pH labeled with oregon green pH-sensitive dye (Bar= 5 μm). Reproduced with permission from Ref. []
Fig.2  Individual cells trapped in microwells or microchambers. (A) Comparison of adhesion on flat and modified surfaces. a1) Top: fluorescence image of bacterial adhesion on flat surfaces. Bottom: fluorescence image of bacterial adhesion on a periodically structured epoxy surface. SYTOX green nucleic acid stain was used to label cells (Bar= 10 μm). a2 and a3) Cross-sectional SEM image of PA14 cells on flat (a2) and structured surfaces (a3) (Bar= 1 μm). Reproduced with permission from Ref []. (B) Controlling the shape of filamentous cells in microchambers fabricated in agarose containing growth media. b1) Schematic description of the microchambers. b2) A single cell confined in a microchamber. b3) Growth of a filamentous cell in the presence of cephalexin. b4) Cell is released into solution. b5 and b6) Phase-contrast microscopy images of donut-shaped microchambers with cells before (b5) and after (b6) the growth of filamentous cells (Bar= 50 μm). b7) Phase-contrast image of spiral, filamentous cells in solution (Bar= 10 μm). Reproduced with permission from Ref. []
Fig.3  Bacterial microcontact-printing. (A-E) Schematic description of the process. (F) Image of an agarose stamp (Bar= 10 mm). (G) Circle-shaped patterns of colonies (Bar= 2 mm). (H) Checkerboard patterns of colonies (Bar= 2 mm). (I) Honeycomb patterns clonies (Bar= 250 μm). Reproduced with permission from Ref. []
Fig.4  Small groups of bacterial cells confined in hydrogel microchambers or microstructures. (A) The confinement of cells in lobster traps with walls consisted of various proteins. a1) Schematic description of the optical setup. a2) Heart-shaped, 2-picoliter traps with (left and right) and without (middle) cells (Bar= 5 μm). a3) Confocal images of traps with cells after 2 h gentamicin treatment at the minimal inhibitory concentration (MIC). Reproduced with permission from Ref. []. (B) microcolonies in 3D gelatin structures. b1) Confocal images of microcolonies in a surface-anchored 2-pL pyramid (top) and an untethered 3-pL torus (bottom). b2) Confocal images of six physically segregated populations in 3D spheroid cavities tethered to the glass substrate. b3) Three connected spheroid cavities tethered to the glass surface by cylindrical posts. The top-down DIC image (left), side-on confocal image (center) and top-down confocal image (right) are shown. Reproduced with permission from Ref. []. (C) Diffusion of HSL between biofilm cell clusters confined in hydrogel chambers. Reproduced with permission from Ref. []
Fig.5  Confinement of bacterial cells by patterning surfaces. (A) A corral array of trapped cells (Bar= 20 μm). Reproduced with permission from Ref. []. (B) Square-shaped biofilms on gold surfaces modified by with methyl-SAM (patterns) and TEG-SAM (background) through microcontact printing. b1) Schematic description of the patterned gold surfaces. b2) Representative image of 72 h patterned biofilms formed on modified gold surfaces (Bar= 50 μm). Cells were labeled with LIVE/DEAD BacLight Bacterial Viability Kit (Life Technologies Inc., Carlsbad, CA, USA). b3) Representative image of cell clusters after 3 h of initial attachment and 7 h of growth (Bar= 10 μm). Cells are labeled with SYTO? 9. Reproduced with permission from Ref. []
Fig.6  Representative SEM images of biofilm formation on smooth (left column) and Sharklet AF (right column) PDMS surfaces. (A) and (B) day 0, (C) and (D) Day 2, (E) and (F) Day 7, (G) and (H) Day 14, and (I) and (J) Day 21. Reproduced with permission from Ref. []
1 Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases , 2001, 33(8): 1387–1392
doi: 10.1086/322972
2 Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley , 2000: 1–12
3 Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials , 2011, 23(6): 690–718
doi: 10.1002/adma.201001215
4 Davey M E, O'Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews , 2000, 64(4): 847–867
doi: 10.1128/MMBR.64.4.847-867.2000
5 Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases , 2002, 8(9): 881–890
doi: 10.3201/eid0809.020063
6 Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews , 2002, 15(2): 155–166
doi: 10.1128/CMR.15.2.155-166.2002
7 Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology , 2002, 56(1): 187–209
doi: 10.1146/annurev.micro.56.012302.160705
8 Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology , 2005, 156(5–6): 626–633
doi: 10.1016/j.resmic.2005.02.005
9 Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature , 1995, 373(6510): 164–167
doi: 10.1038/373164a0
10 Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology , 2004, 53(5): 1545–1557
doi: 10.1111/j.1365-2958.2004.04226.x
11 Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews , 2009, 73(2): 310–347
doi: 10.1128/MMBR.00041-08
12 Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology , 2007, 34(9): 577–588
doi: 10.1007/s10295-007-0234-4
13 Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology , 1971, 68(3): 337–348
doi: 10.1099/00221287-68-3-337
14 Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE , 2012, 7(10): e46718
doi: 10.1371/journal.pone.0046718
15 Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society , 2011, 36(5): 347–355
16 Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology , 2010, 59(3): 253–268
17 Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering , 2008, 10(1): 145–167
doi: 10.1146/annurev.bioeng.10.061807.160536
18 Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens , 2009, 5(3): e1000354
doi: 10.1371/journal.ppat.1000354
19 Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology , 2005, 71(1): 247–254
doi: 10.1128/AEM.71.1.247-254.2005
20 Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology , 2000, 2(4): 450–464
doi: 10.1046/j.1462-2920.2000.00128.x
21 Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology , 2003, 50(1): 101–104
doi: 10.1046/j.1365-2958.2003.03688.x
22 Tischler A D, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology , 2004, 53(3): 857–869
doi: 10.1111/j.1365-2958.2004.04155.x
23 Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science , 2012, 337(6091): 236–239
doi: 10.1126/science.1222981
24 Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America , 2005, 102(31): 11076–11081
doi: 10.1073/pnas.0504266102
25 Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology , 2006, 188(1): 305–316
doi: 10.1128/JB.188.1.305-316.2006
26 Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology , 2004, 186(9): 2724–2734
doi: 10.1128/JB.186.9.2724-2734.2004
27 Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology , 2002, 184(1): 290–301
doi: 10.1128/JB.184.1.290-301.2002
28 Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology , 2001, 183(9): 2888–2896
doi: 10.1128/JB.183.9.2888-2896.2001
29 Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology . Berlin: Springer, 2013, 217–223
30 Ghigo J M. Natural conjugative plasmids induce bacterial biofilm development. Nature , 2001, 412(6845): 442–445
doi: 10.1038/35086581
31 Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology , 1998, 30(2): 285–293
doi: 10.1046/j.1365-2958.1998.01061.x
32 Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology , 2003, 48(6): 1511–1524
doi: 10.1046/j.1365-2958.2003.03525.x
33 Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science , 2002, 295(5559): 1487
doi: 10.1126/science.295.5559.1487
34 An Y H, Friedman R J. An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research , 1998, 43(3): 338–348
doi: 10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
35 MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A , 2006, 78(4): 836–842
doi: 10.1002/jbm.a.30905
36 Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology , 2005, 187(24): 8237–8246
doi: 10.1128/JB.187.24.8237-8246.2005
37 Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews , 2000, 24(5): 661–671
doi: 10.1111/j.1574-6976.2000.tb00565.x
38 Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology , 2008, 6(3): 199–210
doi: 10.1038/nrmicro1838
39 Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology , 2007, 5(3): 209–218
doi: 10.1038/nrmicro1616
40 O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology , 1998, 30(2): 295–304
doi: 10.1046/j.1365-2958.1998.01062.x
41 Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology , 2002, 68(4): 2008–2017
doi: 10.1128/AEM.68.4.2008-2017.2002
42 Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology , 2003, 48(4): 933–946
doi: 10.1046/j.1365-2958.2003.03490.x
43 Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters , 2002, 211(1): 105–110
doi: 10.1111/j.1574-6968.2002.tb11210.x
44 Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology , 2003, 48(1): 253–267
doi: 10.1046/j.1365-2958.2003.03432.x
45 Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications , 2010, 401(4): 521–526
doi: 10.1016/j.bbrc.2010.09.080
46 Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science , 1998, 280(5361): 295–298
doi: 10.1126/science.280.5361.295
47 Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science , 2006, 313(5785): 337–341
doi: 10.1126/science.1126590
48 Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano , 2010, 4(10): 5539–5550
doi: 10.1021/nn101793u
49 Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature , 1999, 398(6724): 223–226
doi: 10.1038/18410
50 Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology , 2010, 6(1): 41–45
doi: 10.1038/nchembio.264
51 Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology , 2013, 11(5): 337–348
doi: 10.1038/nrmicro3010
52 Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials , 2006, 27(16): 3044–3063
doi: 10.1016/j.biomaterials.2005.12.024
53 Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir , 2009, 25(8): 4615–4620
doi: 10.1021/la8037318
54 Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters , 2005, 5(9): 1819–1823
doi: 10.1021/nl0507360
55 Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters , 2010, 10(9): 3717–3721
doi: 10.1021/nl102290k
56 Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics , 2011, 5(2): 024114–024117
doi: 10.1063/1.3605508
57 Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry , 2005, 77(17): 5628–5634
doi: 10.1021/ac0505977
58 Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry , 2008, 390(3): 801–808
doi: 10.1007/s00216-007-1436-3
59 Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry , 2006, 78(14): 4925–4930
doi: 10.1021/ac060541s
60 Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines , 2013, 4(4): 357–369
doi: 10.3390/mi4040357
61 Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science , 2004, 305(5690): 1622–1625
doi: 10.1126/science.1099390
62 Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition , 2009, 48(32): 5908–5911
doi: 10.1002/anie.200901550
63 Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip , 2012, 12(9): 1629–1637
doi: 10.1039/c2lc21284f
64 Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip , 2009, 9(1): 44–49
doi: 10.1039/b809670h
65 Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America , 2012, 109(20): 7665–7670
doi: 10.1073/pnas.1106752109
66 Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences , 2013, 14(5): 10570–10581
doi: 10.3390/ijms140510570
67 Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid , 2009, 7(6): 829–839
doi: 10.1007/s10404-009-0441-6
68 Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology , 2011, 6(3): 260–266
doi: 10.1021/cb100336p
69 Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials , 2003, 24(11): 1959–1967
doi: 10.1016/S0142-9612(02)00565-3
70 Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society , 2003, 125(47): 14613–14619
doi: 10.1021/ja0354566
71 Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters , 2001, 86(18): 4163–4166
doi: 10.1103/PhysRevLett.86.4163
72 Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip , 2009, 9(13): 1850–1858
doi: 10.1039/b902504a
73 Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters , 2006, 88(2): 024104-1–024104-3
doi: 10.1063/1.2164911
74 Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry , 2010, 82(8): 3183–3190
doi: 10.1021/ac902683t
75 Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir , 2005, 21(14): 6436–6442
doi: 10.1021/la047173c
76 Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A , 2009, 91(4): 1202–1209
doi: 10.1002/jbm.a.32312
77 Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One , 2007, 2(7): e663-1–e663-7
78 Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science , 2011, 13(2): 190–195
doi: 10.1021/co100061c
79 Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials , 2011, 32(10): 2500–2507
doi: 10.1016/j.biomaterials.2010.12.014
80 Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society , 2007, 129(7): 1904–1905
doi: 10.1021/ja068390y
81 Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio , 2010, 1(4): e00202–00210
82 Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America , 2013, 110(46): 18380–18385
doi: 10.1073/pnas.1309729110
83 Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society , 2011, 133(15): 5966–5975
doi: 10.1021/ja111131f
84 Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip , 2009, 9(7): 925–934
doi: 10.1039/b810157d
85 Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology , 2012, 9(2): 026007–026010
doi: 10.1088/1478-3975/9/2/026007
86 Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society , 2005, 127(30): 10707–10711
doi: 10.1021/ja052211f
87 Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America , 2004, 101(46): 16104–16108
doi: 10.1073/pnas.0407204101
88 Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(26): 8850–8854
doi: 10.1073/pnas.0709571105
89 Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology , 2005, 187(2): 554–566
doi: 10.1128/JB.187.2.554-566.2005
90 Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society , 2012, 134(12): 5618–5626
doi: 10.1021/ja211593q
91 Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry , 2005, 381(3): 591–600
doi: 10.1007/s00216-004-2847-z
92 Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials , 2004, 25(7–8): 1349–1353
doi: 10.1016/j.biomaterials.2003.08.017
93 Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology , 2007, 73(13): 4300–4307
doi: 10.1128/AEM.02633-06
94 St John P M, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry , 1998, 70(6): 1108–1111
doi: 10.1021/ac9711302
95 Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical , 2000, 70(1–3): 232–242
doi: 10.1016/S0925-4005(00)00574-8
96 Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir , 2003, 19(2): 436–439
doi: 10.1021/la026365+
97 Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices , 2004, 6(3): 223–229
doi: 10.1023/B:BMMD.0000042052.47444.9a
98 Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir , 2012, 28(4): 2131–2136
doi: 10.1021/la2041967
99 Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews , 2005, 105(4): 1103–1169
doi: 10.1021/cr0300789
100 Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir , 2002, 18(25): 9914–9917
doi: 10.1021/la020664h
101 Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small , 2005, 1(4): 445–451
doi: 10.1002/smll.200400072
102 Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications , 2009, 10: 1207–1209
doi: 10.1039/b822197a
103 Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir , 2013, 29(35): 11145–11153
doi: 10.1021/la402608z
104 Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry , 2009, 19(23): 3819–3831
doi: 10.1039/b818698g
105 Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science , 2012, 370(1967): 2381–2417
106 Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science , 2013, 402: 1–18
doi: 10.1016/j.jcis.2013.03.041
107 Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials , 2012, 24(27): 3697–3700
doi: 10.1002/adma.201201037
108 Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology , 2010, 26(1): 20–26
doi: 10.1016/S1005-0302(10)60003-5
109 Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films , 2005, 472(1–2): 37–43
doi: 10.1016/j.tsf.2004.06.087
110 Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir , 2009, 25(5): 3260–3263
doi: 10.1021/la8040715
111 Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir , 2007, 23(13): 7293–7298
doi: 10.1021/la070159q
112 Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science , 2009, 255(22): 9244–9247
doi: 10.1016/j.apsusc.2009.07.010
113 Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology , 2008, 22(15): 1869–1881
doi: 10.1163/156856108X320023
114 Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B , 2000, 104(37): 8836–8840
doi: 10.1021/jp0000174
115 Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta , 1997, 202(1): 1–8
doi: 10.1007/s004250050096
116 Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology , 2011, 2: 152–161
doi: 10.3762/bjnano.2.19
117 Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir , 2006, 22(7): 2966–2967
doi: 10.1021/la0532149
118 Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir , 2004, 20(9): 3517–3519
doi: 10.1021/la036369u
119 Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry , 2011, 21(41): 16304–16322
doi: 10.1039/c1jm12523k
120 Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature , 2011, 477(7365): 443–447
doi: 10.1038/nature10447
121 Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research , 2012, 42(1): 231–263
doi: 10.1146/annurev-matsci-070511-155046
122 Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances , 2013, 3(3): 671–690
doi: 10.1039/c2ra21260a
123 Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research , 2012, 42(1): 211–229
doi: 10.1146/annurev-matsci-070511-155012
124 Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling , 2006, 22(5): 339–360
doi: 10.1080/08927010600980223
125 Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials , 2012, 24(5): 870–880
doi: 10.1021/cm2007044
126 Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films , 2011, 519(11): 3641–3646
doi: 10.1016/j.tsf.2011.01.347
127 Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science. , 2012, 5(6): 7491–7507
doi: 10.1039/c2ee03390a
128 Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances , 2012, 2(5): 2067–2072
doi: 10.1039/c2ra00921h
129 Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces , 2012, 4(2): 1093–1102
doi: 10.1021/am201721e
130 Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces , 2013, 5(11): 4753–4759
doi: 10.1021/am400002k
131 Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research , 2001, 58(1): 97–101
doi: 10.1002/1097-4636(2001)58:1<97::AID-JBM140>3.0.CO;2-8
132 Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology , 2008, 3(1): 41–45
doi: 10.1038/nnano.2007.386
133 Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases , 2007, 2(2): 89–94
doi: 10.1116/1.2751405
134 Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies-Correlating wettability with cell attachment. Biofouling , 2006, 22(1): 1–11
doi: 10.1080/08927010500484854
135 Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling , 2007, 23(1): 55–62
doi: 10.1080/08927010601136957
136 He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature , 2012, 487(7406): 214–218
doi: 10.1038/nature11223
137 Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials , 2010, 9(2): 101–113
doi: 10.1038/nmat2614
138 Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science , 2003, 299(5605): 371–374
doi: 10.1126/science.1078933
139 Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society , 2005, 912: 1
140 Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling , 2010, 26(1): 111–118
doi: 10.1080/08927010903383455
141 Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology , 1999, 65(4): 1603–1609
142 Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology , 1998, 20: 121–125
doi: 10.1038/sj.jim.2900490
143 Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly(N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir , 2001, 17(9): 2552–2555
doi: 10.1021/la001257d
[1] Feng Sun, Jinren Lu, Yuhong Wang, Jie Xiong, Congjie Gao, Jia Xu. Reductant-assisted polydopamine-modified membranes for efficient water purification[J]. Front. Chem. Sci. Eng., 2021, 15(1): 109-117.
[2] Sainab Omar, Yang Yang, Jiawei Wang. A review on catalytic & non-catalytic bio-oil upgrading in supercritical fluids[J]. Front. Chem. Sci. Eng., 2021, 15(1): 4-17.
[3] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[4] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[5] Maher Darwish, Ali Mohammadi, Navid Assi, Samer Abuzerr, Youssef Alahmad. Morphology selective construction of β-cyclodextrin functionalized Fe3O4-Bi2WO6 nanocomposite with superior adsorptivity and visible-light-driven catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(4): 561-578.
[6] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
[7] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[8] Sona Jain, Zhicheng Huang, Brent R. Dixon, Syed Sattar, Juewen Liu. Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide[J]. Front. Chem. Sci. Eng., 2019, 13(3): 608-615.
[9] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[10] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[11] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
[12] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
[13] Zhiyong Wang, Yuan Pu, Dan Wang, Jie-Xin Wang, Jian-Feng Chen. Recent advances on metal-free graphene-based catalysts for the production of industrial chemicals[J]. Front. Chem. Sci. Eng., 2018, 12(4): 855-866.
[14] Ervin Saracevic, David Woess, Franz Theuretzbacher, Anton Friedl, Angela Miltner. Techno-economic assessment of providing control energy reserves with a biogas plant[J]. Front. Chem. Sci. Eng., 2018, 12(4): 763-771.
[15] Hajime Nakatani,Katsutoshi Hori. Cell surface protein engineering for high-performance whole-cell catalysts[J]. Front. Chem. Sci. Eng., 2017, 11(1): 46-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed