Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 156-160    https://doi.org/10.1007/s11705-014-1427-9
RESEARCH ARTICLE
Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor
A. F. D’ Intino,B. de Caprariis,M.L. Santarelli,N. Verdone,A. Chianese()
Department of Chemical Engineering, Sapienza University, via Eudossiana 00184 Rome, Italy
 Download: PDF(635 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, Mg2+ doped hydroxyapatite (Mg-HAP) nanoparticles were produced by a reaction-precipitation process by using a spinning disc reactor (SDR) at high rotational speed. The production process of these nanoparticles consisted of the neutralization reaction between two aqueous solutions of calcium chloride and ammonia orthophosphate at room temperature. By operating at pH= 10, a high purity Mg-HAP nanoparticles were obtained. In particular, they were 51 nm in average size when the two reagents were fed over the disc symmetrically at 3 cm from the disc center and a rotational speed of the disc reactor equal to 1400 r/min was adopted.

Keywords hydroxyapatite      nanoparticles      spinning disc reactor     
Corresponding Author(s): A. Chianese   
Issue Date: 22 May 2014
 Cite this article:   
A. F. D’ Intino,B. de Caprariis,M.L. Santarelli, et al. Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor[J]. Front. Chem. Sci. Eng., 2014, 8(2): 156-160.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1427-9
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/156
Fig.1  Spinning disc reactor (SDR) design
Fig.2  Layout of the reagents feed locations at 2 cm and 3 cm
Fig.3  Average particle size of Mg-HAP particles produced at 1400 rpm as a function of each reagent solution flow rate
Fig.4  Mg-HAP particle average size vs rotational speed for 2 and 3 cm feed points
Fig.5  Influence of speed rotation on residence time and specific dispersed power
Fig.6  Black: XRD pattern of Mg-HAP, x = 0.1, Fadeev [20]; Red: XRD pattern of the Mg-HAP powder, x = 0.566, produced in this work at 1400 rpm, a feed point of 3 cm and a flow rate of 2 mL/s.
Fig.7  SEM image of Mg-HAP nanoparticles produced at 1400 rpm, a feed point of 3 cm and a flow rate of 2 mL/s
Fig.8  FT-IR spectra of the Mg-HAP and HAP particles produced at 1400 rpm, a feed point of 3 cm and a flow rate of 2 mL/s. Blue: produced Mg-HAP sample; Red: HAP reference sample, Silverstein?? et al. [21].
1 WebsterT J, Massa-SchlueterE, SmithJ, SlamovichE. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 2004, 25(11): 2111-2121
doi: 10.1016/j.biomaterials.2003.09.001
2 PinaS, OlheroS, GheduzziS, MilesA, FerreiraJ. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5(4): 1233-1240
doi: 10.1016/j.actbio.2008.11.026
3 LandiE, LogroscinoG, ProiettiL, TampieriA, SandriM, SiproS. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. Journal of Materials Science. Materials in Medicine, 2008, 19(1): 239-247
doi: 10.1007/s10856-006-0032-y
4 Jahnen-DechentW, KettelerM. Magnesium basics. Clinical Kidney Journal, 2012, 5(Suppl 1): i3-i14
doi: 10.1093/ndtplus/sfr163
5 LandiE, TampieriA, CelottiG, LangenatiR, SandriM, SiproS. Nucleation of hydroxyapatite in synthetic body fluid dense and porous scaffold development: from synthesis to in vivo behavior. Biomaterials, 2005, 26: 2835-2845
doi: 10.1016/j.biomaterials.2004.08.010
6 BigiA, FaliniG, ForestiE, GazzanoM, RipamontiA, RoveriN. Magnesium influence on hydroxyapatite crystallization. Journal of Inorganic Biochemistry, 1993, 49(1): 69-78
doi: 10.1016/0162-0134(93)80049-F
7 GibsonI R, BonfieldW. Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatite. Journal of Materials Science. Materials in Medicine, 2002, 13(7): 685-693
doi: 10.1023/A:1015793927364
8 BigiA, FaliniG, ForestiE, GazzanoM, RipamontiA, RoveriN. Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallographica. Section B, Structural Science, 1996, B52(1): 87-92
doi: 10.1107/S0108768195008615
9 CorreiaR N, MagalhanesM C F, MarquesP A, SenosA M. Wet synthesis and characterization of modified hydroxyapatite powders. Journal of Materials Science. Materials in Medicine, 1996, 7: 501
doi: 10.1007/BF00705432
10 FanovichM A, CastroM S, Porto LopezJ M. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceramics International, 1999, 25(6): 517-522
doi: 10.1016/S0272-8842(97)00087-4
11 BigiA, MarchettiF, RipamontiA, RoveriN, ForestiE. Magnesium and strontium interaction with carbonate-containing hydroxyapatite in aqueous medium. Journal of Inorganic Biochemistry, 1981, 15(4): 317-327
doi: 10.1016/S0162-0134(00)80235-4
12 AdzilaS, RameshS, SpoyanI, TanC Y, HamdiM, TengW D. Mechanochemical synthesis of magnesium doped hydroxyapatite: Powder characterization. Applied Mechanics and Materials, 2013, 372: 62-65
doi: 10.4028/www.scientific.net/AMM.372.62
13 RyuH S, HongK S, LeeJ K, KimD J, LeeJ H, ChangB S, LeeD H, LeeC K, ChungS S. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004, 25(3): 393-401
doi: 10.1016/S0142-9612(03)00538-6
14 TautzenbergerA, KuvtunA, IgnatiusA. Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 2012, 7: 4545-4557
doi: 10.2147/IJN.S34127
15 BaffiG, CafieroM L, ChianeseA, JachuckR J. Process intensification: Precipitation of barium sulphate using a spinning disc reactor (SDR). Industrial & Engineering Chemistry Research, 2002, 41(21): 5240-5246
doi: 10.1021/ie010654w
16 de CaprariisB, Di RitaM, StollerM, VerdoneN, ChianeseA. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chemical Engineering Science, 2012, 76: 73-80
doi: 10.1016/j.ces.2012.03.043
17 SalimiM N, BridsonR H, GroverL M, LeekeG A. Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technology, 2012, 218: 109-118
doi: 10.1016/j.powtec.2011.11.049
18 LiJ, ChenY P, YinY, YaoF, YaoK. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials, 2007, 28(5): 781-790
doi: 10.1016/j.biomaterials.2006.09.042
19 LandiE, TampieriA, Mattioli-BelmonteM, CelottiG, SandriM, GiganteA, FavaP, BiaginiG. Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: Synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 2006, 26(13): 2593-2601
doi: 10.1016/j.jeurceramsoc.2005.06.040
20 FadeevI V, ShvornevaL I, BarinovS M, OrlovskiiV P. Synthesis and structure of magnesium-substituted hydroxyapatite. Inorganic Materials, 2003, 39(9): 947-950
doi: 10.1023/A:1025509305805
21 SilversteinR M, WebsterF X. KeimLeD J. Spectrometric Identification of Organic Compounds. John Wiley & Sons, 2005, 82-108
[1] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[2] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[3] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[4] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[5] Fan Shu, Meng Wang, Jinbo Pang, Ping Yu. A free-standing superhydrophobic film for highly efficient removal of water from turbine oil[J]. Front. Chem. Sci. Eng., 2019, 13(2): 393-399.
[6] Vo-Van Giau, Yoon-Hee Park, Kyu-Hwan Shim, Sang-Wook Son, Seong-Soo A. An. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media[J]. Front. Chem. Sci. Eng., 2019, 13(1): 90-97.
[7] Peizhen Duan, Juan Shen, Guohong Zou, Xu Xia, Bo Jin. Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites[J]. Front. Chem. Sci. Eng., 2018, 12(4): 798-805.
[8] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[9] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[10] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[11] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[12] Mani Abirami, Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[13] Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[14] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[15] Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed