Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (1) : 15-32    https://doi.org/10.1007/s11705-015-1501-y
REVIEW ARTICLE
Treatment of landfill waste, leachate and landfill gas: A review
Hecham OMAR, Sohrab ROHANI()
The University of Western Ontario, Department of Chemical and Biochemical Engineering, London, Ontario N6A 5B9, Canada
 Download: PDF(294 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review aims at the treatment of the entire landfill, including the waste mass and the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, anaerobic and semi-aerobic bioreactor landfills, dry-tomb landfills), leachate treatments (anaerobic and aerobic treatments, anammox, adsorption, chemical oxidation, coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, adsorption, absorption, permeation and cryogenic treatments) are reviewed. Available information and the gaps present in current knowledge is summarized. The most significant areas to expand are landfill waste treatments, which in recent years has begun to grow but there is an opportunity for much more. Another area to explore is the treatment of landfill gas, a very large field to which not much effort has been put forth. This review is to compare different treatment methods and give direction to future research.

Keywords landfill      aerobic      anaerobic      leachate      landfill gases      municipal solid waste     
Corresponding Author(s): Sohrab ROHANI   
Issue Date: 07 April 2015
 Cite this article:   
Hecham OMAR,Sohrab ROHANI. Treatment of landfill waste, leachate and landfill gas: A review[J]. Front. Chem. Sci. Eng., 2015, 9(1): 15-32.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1501-y
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I1/15
Potential advantages Potential disadvantages
• LFG has high methane concentration which can be used • High VFA concentration can leach harmful constituents
• Decreased waste stabilization times • Relatively high levels of ammonia in leachate
• Relatively low cost • Production of hydrogen sulfide
In-situ treatment of leachate
Tab.1  Advantages and disadvantages of anaerobic bioreactor landfill
Potential advantages Potential disadvantages
• Decreased waste stabilization times • High cost for aeration
• Little to no methane production decreases GHG emissions • Air can cause flammable/explosive mixtures
In-situ treatment of leachate • Unknown gases may be produced
• Removal of moisture by air stripping
• Little to no ammonia production
Tab.2  Advantages and disadvantages of aerobic bioreactor landfill
Potential advantages Potential disadvantages
• Decreased waste stabilization times • Unknown gases may be produced
• Little methane production decreases GHG emissions • Air can cause flammable/explosive mixtures
In-situ treatment of leachate
• Relatively low cost
Tab.3  Advantages and disadvantages of semi-aerobic bioreactor landfill
Fig.1  Schematic diagram of (a) anaerobic bioreactor landfill; (b) aerobic bioreactor landfill; (c) semi-aerobic bioreactor landfill—all with leachate circulation
Leachate characteristics Operational conditions Removal efficiency /% Ref.
COD /(mg·L−1) BOD /(mg·L−1) BOD/COD pH Temperature /°C Volume /L HRTa) /d
Aerobic reactor (in-situ) 45000 35000 0.8 4.5 334 89 COD
97 BOD
[73]
40500 4 25−53 250 91 COD [74]
Aerobic reactor (ex-situ) 4298–5547 913–1017 0.16–0.24 8.6–9.3 3 12 84.4 COD [75]
4740–28120 2840 0.4 7.53 26–30 18 60–90 TOC [76]
3246 7 25 4 0.33 69–83 COD [77]
Anaerobic reactor (in-situ) 62000 6.3 392 98 COD [78]
Anaerobic reactor (ex-situ) 55351 49400 0.81 6.31 32±1 150 15 73 COD
77 BOD
[68]
16200–20000 10750–11000 0.54–1.02 7.3–7.8 35±2 1 1.5–10 85 COD [66]
32562 16011 0.49 5.1–5.31 34±1 14 20 79.3 COD
97.1 BOD
[67]
1365 276 0.2 7.52 4 24 76.8 COD [79]
43000 6.4±2 37 2 5 87 COD [80]
Tab.4  Biological treatment method removal efficiencies
Leachate characteristics Coagulant/flocculent Dose /(g·L−1) Removal efficiency /% Ref.
COD /(mg·L−1) BOD /(mg·L−1) BOD/COD pH
700–15000 50–4200 0.2 7.9 Al2(SO4)3·18H2O 0.8 31 COD [97]
FeCl3·6H2O 2 80 COD
44000–115000 9500–80800 0.38 6.2 Al2(SO4)3·18H2O 1.5 38 COD
FeCl3·6H2O 5.2 30 COD
4100 200 0.05 8.2 Al2(SO4)3·18H2O 0.035 mol·L−1 42 COD [98]
FeCl3·6H2O 0.035 mol·L−1 55 COD
1925 8.4 Al2(SO4)3·18H2O 9.5 62.8 COD [99]
PAC 2 43.1 COD
5050 840 0.17 8 FeCl3·6H2O 7 mmol·L−1 72 COD [100]
PAC 11 mmol·L−1 62 COD
Tab.5  Comparison of coagulation/flocculation studies
1 United States Environmental Protection Agency. Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012. 2014
2 L Arsova, R van Haaren, N Goldstein, S M Kaufman, N J Themelis. The state of garbage in America. BioCycle, 2008, 49(12), 22
3 M Hudgins, S Harper. Operational characteristics of two aerobic landfill systems. 1999
4 M Huber-Humer, P Kjeldsen, K A Spokas. Special issue on landfill gas emission and mitigation. Waste Management, 2011, 31(5): 821–822
5 J Bogner, R Pipatti, S Hashimoto, C Diaz, K Mareckova, L Diaz, P Kjeldsen, S Monni, A Faaij, Q Gao, T Zhang, M A Ahmed, R T M Sutamihardja, R Gregory. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working Group III (Mitigation). Waste Management & Research, 2008, 26(1): 11–32
6 R A Rasmussen, M A K Khalil. Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research, D, Atmospheres, 1984, 89(D7): 11599–11605
7 R Mehta, M Barlaz, R Yazdani, D Augenstein, M Bryars, L Sinderson. Refuse decomposition in the presence and absence of leachate recirculation. Journal of Environmental Engineering, 2002, 128(3): 228–236
8 D R Reinhart, P T McCreanor, T Townsend. The bioreactor landfill: Its status and future. Waste Management & Research, 2002, 20(2): 172–186
9 D R Reinhart, T Townsend. Landfill Bioreactor Design and Operation. New York: Lewis Publishers, 1998
10 H S Kulkarni, K R Reddy. Moisture distribution in bioreactor landfills: A review. Indian Geotechnical Journal, 2012, 42(3): 125–149
11 K Reddy, H Hettiarachchi, N Parakalla, J Gangathulasi, J Bogner, T Lagier. Hydraulic Conductivity of MSW in Landfills. Journal of Environmental Engineering, 2009, 135(8): 677–683
12 J Jiang, G Yang, Z Deng, Y Huang, Z Huang, X Feng, S Zhou, C Zhang. Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management, 2007, 27(7): 893–901
13 P McCreanor, D Reinhart. Hydrodynamic modeling of leachate recirculating landfills. Waste Management & Research, 1999, 17(6): 465–469
14 K Westlake. Sustainable landfill—possibility or pipe-dream? Waste Management & Research, 1997, 15(5): 453–461
15 Y Wang, M Pelkonen, J Kaila. Optimization of landfill leachate management in the aftercare period. Waste Management & Research, 2012, 30(8): 789–799
16 J Méry, S Bayer. Comparison of external costs between dry tomb and bioreactor landfills: Taking intergenerational effects seriously. Waste Management & Research, 2005, 23(6): 514–526
17 D Laner, M Crest, H Scharff, J W F Morris, M A Barlaz. A review of approaches for the long-term management of municipal solid waste landfills. Waste Management, 2012, 32(3): 498–512
18 O Hirata, Y Matsufuji, A Tachifuji, R Yanase. Waste stabilization mechanism by a recirculatory semi-aerobic landfill with the aeration system. Journal of Material Cycles and Waste Management, 2012, 14(1): 47–51
19 M Ritzkowski, K U Heyer, R Stegmann. Fundamental processes and implications during in situ aeration of old landfills. Waste Management, 2006, 26(4): 356–372
20 J C Benefield, S J Randall. Biological Process Design for Wastewater Treatment. New Jersey: Prentice-Hall, 1980
21 J Dong, H Sheng, C Wen, M Hong, H Jiang. Effects of phosphorous on the stabilization of solid waste in anaerobic landfill. Process Safety and Environmental Protection, 2013, 91(6): 483–488
22 V Jegatheesan, G Kastl, I Fisher, J Chandy, M Angles. Modeling bacterial growth in drinking water: Effect of nutrients. American Water Works Association Journal, 2004, 96(5): 129–135
23 I T Miettinen, T Vartiainen, P J Martikainen. Phosphorus and bacterial growth in drinking water. Applied and Environmental Microbiology, 1997, 63(8): 3242–3245
24 A Sathasivan, S Ohgaki, K Yamamoto, N Kamiko. Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Science and Technology, 1997, 35(8): 37–44
25 E R Fielding, D B Archer, E C de Macario, A J L Macario. Isolation and characterization of methanogenic bacteria from landfills. Applied and Environmental Microbiology, 1988, 54(3): 835–836
26 M Ritzkowski, R Stegmann. Landfill aeration worldwide: Concepts, indications and findings. Waste Management, 2012, 32(7): 1411–1419
27 K Leikam, K U Heyer, R Stegmann. In situ stabilization of completed landfills and old sites. In: Proceedings Sardinia, 1997. Sixth International Waste Management Landfill Symptomatology. Cagliari, Italy, 1997
28 N D Berge, D R Reinhart, T G Townsend. The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology, 2005, 35(4): 365–399
29 J E Bonany, P J V Geel, H B Gunay, O B Isgor. Simulating waste temperatures in an operating landfill in Québec, Canada. Waste Management & Research, 2013, 31(7): 692–699
30 A J Crutcher, F A Rovers, E A McBean. Temperature as an indicator of landfill behavior. Water, Air, and Soil Pollution, 1982, 17(2): 213–223
31 H Hettiarachchi, J Meegoda, P Hettiaratchi. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 2009, 29(3): 1018–1025
32 G Öncü, M Reiser, M Kranert. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: Leachate quality after 1 year of operation. Waste Management, 2012, 32(12): 2374–2384
33 M C Zanetti. Aerobic biostabilization of old MSW landfills. American Journal Engineering Application Science, 2008, 1(4): 393–398
34 A S Erses, T T Onay, O Yenigun. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426
35 R Slezak, L Krzystek, S Ledakowicz. Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 2012, 66(6): 543–549
36 C Wu, T Shimaoka, H Nakayama, T Komiya, X Chai, Y Hao. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic–anaerobic landfill method. Waste Management, 2014, 34(1): 101–111
37 S E Borglin, T C Hazen, C M Oldenburg, P T Zawislanski. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. Journal of the Air & Waste Management Association, 2004, 54(7): 815–822
38 C Vitello. Aerobic degradation: increasing landfill efficiency. Solid Waste Recycle, 2001, 6(1): 25–27
39 M S Bilgili, A Demir, G Varank. Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate. Waste Management & Research, 2012, 30(2): 161–170
40 X Zhang, T Matsuto. Assessment of internal condition of waste in a roofed landfill. Waste Management, 2013, 33(1): 102–108
41 M S Bilgili, A Demir, B Özkaya. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of Hazardous Materials, 2007, 143(1-2): 177–183
42 A Kallel, T Matsuto, N Tanaka. Determination of oxygen consumption for landfilled municipal solid wastes. Waste Management & Research, 2003, 21(4): 346–355
43 M El-Fadel, W Fayyad, J Hashisho. Enhanced solid waste stabilization in aerobic landfills using low aeration rates and high density compaction. Waste Management & Research, 2013, 31(1): 30–40
44 M Warith. Bioreactor landfills: Experimental and field results. Waste Management, 2002, 22(1): 7–17
45 Y Yang, B Yue, Y Yang, Q Huang. Influence of semi-aerobic and anaerobic landfill operation with leachate recirculation on stabilization processes. Waste Management & Research, 2011, 30(3): 255–265
46 P Tang, Y Zhao, D Liu. A laboratory study on stabilization criteria of semi-aerobic landfill. Waste Management & Research, 2008, 26(6): 566–572
47 Q Huang, Y Yang, X Pang, Q Wang. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. Journal of Environmental Sciences (China), 2008, 20(4): 499–504
48 S Q Aziz, H A Aziz, M S Yusoff, M J K Bashir, M Umar. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 2010, 91(12): 2608–2614
49 S Kumar, C Chiemchaisri, A Mudhoo. Bioreactor landfill technology in municipal solid waste treatment: An overview. Critical Reviews in Biotechnology, 2010, 31(1): 77–97
50 L C Green. US Patent, 5888022, 1999-03-30
51 R Yazdani, M E Mostafid, B Han, P T Imhoff, P Chiu, D Augenstein, M Kayhanian, G Tchobanoglous. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environmental Science & Technology, 2010, 44(16): 6215–6220
52 S Rendra, M A Warith, L Fernandes. Degradation of municipal solid waste in aerobic bioreactor landfills. Environmental Technology, 2007, 28(6): 609–620
53 D V Wadkar, P R Modak, V S Chavan. Aerobic thermophilic composting of municipal solid waste. International Journal of Engineering Science and Technology, 2013, 5(3): 716–718
54 E Senior, ed. Microbiology of Landfill Sites. 2nd ed. Boca Raton: Lewis Publishers, 1995
55 S Renou, J G Givaudan, S Poulain, F Dirassouyan, P Moulin. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 2008, 150(3): 468–493
56 J C S Lu, B Eichenberger, R J Stearns. Leachate from municipal landfills: Production and management. New Jersey: Noyes Publications, 1985
57 I Vadillo, F Carrasco, B Andreo, A G de Torres, C Bosch. Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). Environmental Geology, 1999, 37(4): 326–332
58 M P Hudgins, J March. In-situ solid waste composting using an aerobic landfill system. In: Oral Present. Conference Attendees Composting in the Southeast, 1998
59 J Wiszniowski, D Robert, J Surmacz-Gorska, K Miksch, J V Weber. Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 2006, 4(1): 51–61
60 S R Dhokpande, J P Kaware. Biological methods for heavy metal removal—A review. International Journal Engineering Science Innovation Technology, 2013, 2(5): 304–309
61 F J Rivas, F Beltrán, F Carvalho, B Acedo, O Gimeno. Stabilized leachates: Sequential coagulation-flocculation+ chemical oxidation process. Journal of Hazardous Materials, 2004, 116(1-2): 95–102
62 J Berrueta, L Castrillón. Anaerobic treatment of leachates in UASB reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1992, 54(1): 33–37
63 J E Chang. Treatment of landfill leachate with an upflow anaerobic reactor containing a sludge bed and a filter. Water Science and Technology, 1989, 21: 133–143
64 J G Henry, D Prasad, H Young. Removal of organics from leachates by anaerobic filter. Water Research, 1987, 21(11): 1395–1399
65 K J Kennedy, M F Hamoda, S G Guiot. Anaerobic treatment of leachate using fixed film and sludge bed filter systems. Journal- Water Pollution Control Federation, 1988, 60(9): 1675–1683
66 H Timur, I Özturk. Anaerobic sequencing batch reactor treatment of landfill leachate. Water Research, 1999, 33(15): 3225–3230
67 R D Cameron, F A Koch. Trace metals and anaerobic digestion of leachate. Journal-Water Pollution Control Federation, 1980, 52(2): 282–292
68 S Kheradmand, A Karimi-Jashni, M Sartaj. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system. Waste Management, 2010, 30(6): 1025–1031
69 H Kim, Y C Jang, T Townsend. The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. Journal of Hazardous Materials, 2011, 194: 369–377
70 H D Robinson, M J Barr. Aerobic biological treatment of landfill leachates. Waste Management & Research, 1999, 17(6): 478–486
71 A Giannis, G Makripodis, F Simantiraki, M Somara, E Gidarakos. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Management, 2008, 28(8): 1346–1354
72 Y Liu. Chemically reduced excess sludge production in the activated sludge process. Chemosphere, 2003, 50(1): 1–7
73 M S Bilgili, A Demir, B Özkaya. Quality and quantity of leachate in aerobic pilot-scale landfills. Environmental Management, 2006, 38(2): 189–196
74 M Sartaj, M Ahmadifar, A K Jashni. Assessment of in-situ aerobic treatment of municipal landfill leachate at laboratory scale. Iranian Journal of Sciene and Technology Transaction B-Engineering, 2010, 34(B1): 107–116
75 Y Wei, M Ji, R Li, F Qin. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 2012, 32(3): 448–455
76 A B Yahmed, N Saidi, I Trabelsi, F Murano, T Dhaifallah, L Bousselmi, A Ghrabi. Microbial characterization during aerobic biological treatment of landfill leachate (Tunisia). Desalination, 2009, 246(1-3): 378–388
77 P Andrés, F Gutierrez, C Arrabal, M Cortijo. Aerobic biological treatment of leachates from municipal solid waste landfill. Journal of Environment Science Health, Part A. Environmental Sciences, 2004, 39(5): 1319–1328
78 M S Bilgili, A Demir, E Akkaya, B Özkaya. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors. Journal of Hazardous Materials, 2008, 158(1): 157–163
79 M A Kamaruddin, M S Yusoff, H A Aziz, N K Basri. Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Applied Water Science, 2013, 3(2): 359–366
80 O B D Thabet, H Bouallagui, J Cayol, B Ollivier, M L Fardeau, M Hamdi. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. Journal of Hazardous Materials, 2009, 167(1-3): 1133–1140
81 R David. Environmental microbiology: Deciphering anammox. Nature Reviews. Microbiology, 2011, 9(12): 833
82 B Kartal, W J Maalcke, N M de Almeida, I Cirpus, J Gloerich, W Geerts, H J M Op den Camp, H R Harhangi, E M Janssen-Megens, K J Francoijs, H G Stunnenberg, J T Keltjens, M S M Jetten, M Strous. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130
83 M Strous, E Van Gerven, P Zheng, J G Kuenen, M S M Jetten. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31(8): 1955–1962
84 B Kartal, J G Kuenen, M C M van Loosdrecht. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703
85 G Cema, J Wiszniowski, S Żabczyński, E Zabłocka-Godlewska, A Raszka, J Surmacz-Górska. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Science and Technology, 2007, 55(8-9): 35–42
86 S Liu, F Yang, F Meng, H Chen, Z Gong. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. Journal of Biotechnology, 2008, 138(3-4): 96–102
87 S Qiao, X Yin, J Zhou, K Furukawa. Inhibition and recovery of continuous electric field application on the activity of anammox biomass. Biodegradation, 2014, 25(4): 505–513
88 X Duan, J Zhou, S Qiao, H Wei. Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal. Bioresource Technology, 2011, 102(5): 4290–4293
89 E Marañón, L Castrillón, Y Fernández-Nava, A Fernández-Méndez, A Fernández-Sánchez. Tertiary treatment of landfill leachates by adsorption. Waste Management & Research, 2009, 27(5): 527–533
90 E Malliou, M Loizidou, N Spyrellis. Uptake of lead and cadmium by clinoptilolite. Science of the Total Environment, 1994, 149(3): 139–144
91 M E Davis, R F Lobo. Zeolite and molecular sieve synthesis. Chemistry of Materials, 1992, 4(4): 756–768
92 M J Zamzow, B R Eichbaum, K R Sandgren, D E Shanks. Removal of heavy metals and other cations from wastewater using zeolites. Separation Science and Technology, 1990, 25(13-15): 1555–1569
93 A Marco, S Esplugas, G Saum. How and why combine chemical and biological processes for wastewater treatment. Water Science and Technology, 1997, 35(4): 321–327
94 J Derco, A Ž Gotvajn, J Zagorc-Končan, B Almásiová, A Kassai. Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 2010, 64(2): 237–245
95 F Boumechhour, K Rabah, C Lamine, B M Said. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water and Environment Journal, 2013, 27(1): 114–119
96 M T Samadi, M H Saghi, A Rahmani, J Hasanvand, S Rahimi, M S Syboney. Hamadan landfill leachate treatment by coagulation-flocculation process. Iranian Journal of Environmental Health Sciences & Engineering, 2010, 7(3): 253–258
97 A A Tatsi, A I Zouboulis, K A Matis, P Samaras. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 2003, 53(7): 737–744
98 A Amokrane, C Comel, J Veron. Landfill leachates pretreatment by coagulation-flocculation. Water Research, 1997, 31(11): 2775–2782
99 S Ghafari, H A Aziz, M H Isa, A A Zinatizadeh. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 2009, 163(2-3): 650–656
100 X Ntampou, A I Zouboulis, P Samaras. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere, 2006, 62(5): 722–730
101 E Ameen, S Muyibi, M Abdulkarim. Microfiltration of pretreated sanitary landfill leachate. Environmentalist, 2011, 31(3): 208–215
102 O Primo, A Rueda, M J Rivero, I Ortiz. An integrated process, Fenton Reaction-ultrafiltration, for the treatment of landfill leachate: Pilot plant operation and analysis. Industrial & Engineering Chemistry Research, 2008, 47(3): 946–952
103 P Vandezande, L E M Gevers, I F J Vankelecom. Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 2008, 37(2): 365–405
104 D Trebouet, J P Schlumpf, P Jaouen, F Quemeneur. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 2001, 35(12): 2935–2942
105 S Renou, S Poulain, J G Givaudan, P Moulin. Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate. Desalination, 2009, 249(1): 72–82
106 A Chianese, R Ranauro, N Verdone. Treatment of landfill leachate by reverse osmosis. Water Research, 1999, 33(3): 647–652
107 V Rajaram, F Z Siddiqui, M E Khan. Landfill gas treatment technologies. In: From Landfill Gas to Energy: Technologies and Challenges, Leiden. The Netherlands: CRC/Balkema, 2012, 153–208
108 S Mor, K Ravindra, A De Visscher, R P Dahiya, A Chandra. Municipal solid waste characterization and its assessment for potential methane generation: a case study. Science of the Total Environment, 2006, 371(1-3): 1–10
109 B F Staley, F Xu, S J Cowie, M A Barlaz, G R Hater. Release of trace organic compounds during the decomposition of municipal solid waste components. Environmental Science & Technology, 2006, 40(19): 5984–5991
110 N J Themelis, P A Ulloa. Methane generation in landfills. Renewable Energy, 2007, 32(7): 1243–1257
111 M R Allen, A Braithwaite, C C Hills. Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environmental Science & Technology, 1997, 31(4): 1054–1061
112 B Eklund, E P Anderson, B L Walker, D B Burrows. Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environmental Science & Technology, 1998, 32(15): 2233–2237
113 C L Thomas, M A Barlaz. Production of non-methane organic compounds during refuse decomposition in a laboratory-scale landfill. Waste Management & Research, 1999, 17(3): 205–211
114 Y Zhang, D Yue, J Liu, P Lu, Y Wang, J Liu, Y Nie. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101: 54–58
115 J Powell, P Jain, H Kim, T Townsend, D Reinhart. Changes in landfill gas quality as a result of controlled air injection. Environmental Science & Technology, 2006, 40(3): 1029–1034
116 M A Goossens. Landfill gas power plants. Renewable Energy, 1996, 9(1-4): 1015–1018
117 Q Aguilar-Virgen, P Taboada-González, S Ojeda-Benítez. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. Journal of Cleaner Production, 2014, 79: 53–60
118 C Chiemchaisri, J P Juanga, C Visvanathan. Municipal solid waste management in Thailand and disposal emission inventory. Environmental Monitoring and Assessment, 2007, 135(1-3): 13–20
119 A A Faour, D R Reinhart, H You. First-order kinetic gas generation model parameters for wet landfills. Waste Management, 2007, 27(7): 946–953
120 A Garg, G Achari, R C Joshi. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Management & Research, 2006, 24(4): 363–375
121 S L Machado, M F Carvalho, J P Gourc, O M Vilar, J C F do Nascimento. Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 2009, 29(1): 153–161
122 W Wanichpongpan, S H Gheewala. Life cycle assessment as a decision support tool for landfill gas-to energy projects. Journal of Cleaner Production, 2007, 15(18): 1819–1826
123 M F M Abushammala, N E A Basri, H Basri, A A H Kadhum, A H El-Shafie. Estimation of methane emission from landfills in Malaysia using the IPCC 2006 FOD model. Journal of Applied Science, 2010, 10(15): 1603–1609
124 G Börjesson, J Samuelsson, J Chanton, R Adolfsson, B Galle, B H Svensson. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus. Series B, Chemical and Physical Meteorology, 2009, 61(2): 424–435
125 K U Heyer, K Hupe, R Stegmann. Methane emissions from MBT landfills. Waste Management, 2013, 33(9): 1853–1860
126 R Penteado, M Cavalli, E Magnano, F Chiampo. Application of the IPCC model to a Brazilian landfill: First results. Energy Policy, 2012, 42(1): 551–556
127 H R Amini, D R Reinhart, K R Mackie. Determination of first-order landfill gas modeling parameters and uncertainties. Waste Management, 2012, 32(2): 305–316
128 J Tintner, M Kühleitner, E Binner, N Brunner, E Smidt. Modeling the final phase of landfill gas generation from long-term observations. Biodegradation, 2012, 23(3): 407–414
129 K A Brown, D H Maunder. Exploitation of landfill gas: A UK perspective. Water Science and Technology, 1994, 30(12): 143–151
130 H Han, J Long, S Li, G Qian. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system. Waste Management & Research, 2010, 28(4): 315–321
131 B Jewaskiewitz. Landfill gas recovery, green energy, and the clean development mechanism. Civil Engineering Management South African Institution of Civil Engineering, 2010, 18(7): 19–23
132 A A Solov’yanov. Associated petroleum gas flaring: Environmental issues. Russian Journal of General Chemistry, 2011, 81(12): 2531–2541
133 C Ménard, A A Ramirez, J Nikiema, M Heitz. Biofiltration of methane and trace gases from landfills: A review. Environmental Reviews, 2012, 20(1): 40–53
134 S Sircar. Separation of methane and carbon dioxide gas mixtures by pressure swing adsorption. Separation Science and Technology, 1988, 23(6-7): 519–529
135 H C Shin, J W Park, K Park, H C Song. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environmental Pollution, 2002, 119(2): 227–236
136 A Gaur, J W Park, S Maken, H J Song, J J Park. Landfill gas (LFG) processing via adsorption and alkanolamine absorption. Fuel Processing Technology, 2010, 91(6): 635–640
137 W J Koros, G K Fleming. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80
138 R Rautenbach, K Welsch. Treatment of landfill gas by gas permeation—pilot plant results and comparison to alternatives. Journal of Membrane Science, 1994, 87(1-2): 107–118
139 A Gabelman, S T Hwang. Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159(1-2): 61–106
140 S J Markbreiter, I Weiss. US Patent, 5596884, 1997-01-28
[1] Huaxin Qu, Jie Deng, Bei Wang, Lezi Ouyang, Yong Tang, Kai Yu, Lan-Lan Lou, Shuangxi Liu. Thermoresponsive block copolymer supported Pt nanocatalysts for base-free aerobic oxidation of 5-hydroxymethyl-2-furfural[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1514-1523.
[2] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[3] Xuan Wang, Daneel Geysen, Tom Van Gerven, Peter T. Jones, Bart Blanpain, Muxing Guo. Characterization of landfilled stainless steel slags in view of metal recovery[J]. Front. Chem. Sci. Eng., 2017, 11(3): 353-362.
[4] Prayoga SURYADARMA, Yoshihiro OJIMA, Yuto FUKUDA, Naohiro AKAMATSU, Masahito TAYA. The rpoS deficiency suppresses acetate accumulation in glucose-enriched culture of Escherichia coli under an aerobic condition[J]. Front Chem Sci Eng, 2012, 6(2): 152-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed