Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (1) : 133-138    https://doi.org/10.1007/s11705-017-1637-z
COMMUNICATION
Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization
Kata Kiss,Wei Ting Ng,Qingxin Li()
Institute of Chemical & Engineering Sciences, Agency for Science, Technology and Research, Jurong Island 627833, Singapore
 Download: PDF(235 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rhamnolipids are a class of biosurfactants that have a great potential to be used in industries. Five proteins/enzymes, namely RhlA, RhlB, RhlC, RhlG and RhlI, are critical for the production of rhamnolipids in Pseudomonas aeruginosa. Four of the 5 proteins except RhlC were successfully over-expressed in E. coli and three of them (RhlA, RhlB and RhlI) were purified and obtained in milligram quantities. The purified proteins were shown to be folded in solution. Homology models were built for RhlA, RhlB and RhlI. These results lay a basis for further structural and functional characterization of these proteins in vitro to favor the construction of super strains for rhamnolipids production.

Keywords rhamnolipids      Pseudomonas      RhlA      RhlB      RhlI      protein folding     
PACS:     
Fund: 
Corresponding Author(s): Qingxin Li   
Just Accepted Date: 24 January 2017   Online First Date: 28 February 2017    Issue Date: 17 March 2017
 Cite this article:   
Kata Kiss,Wei Ting Ng,Qingxin Li. Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization[J]. Front. Chem. Sci. Eng., 2017, 11(1): 133-138.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1637-z
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I1/133
Fig.1  A pathway of rhamnolipids synthesis in Pseudomonas.

Acyl-CoA: acetyl-coenzyme; HAA: β-3-(3-hydroxyalkanoyloxy) alkanoic acid; ACP: acyl carrier protein; RhlA: β-3-(3-hydroxyalkanoyloxy) alkanoic acid synthetase; RhlB: rhamnosyltransferase 1; RhlC: rhamnosyltransferase 2

Fig.2  Small scale induction of rhamnolipids-producing related proteins of Pseudomonas in E. coli.

The protein induction was conducted as described in Materials and methods. The induced cells were harvested by centrifugation and mixed with 2×SDS-PAGE loading buffer. SDS-PAGE was used to analyze the protein induction. Clear induction band was observed by comparing with the reference sample which was prepared without adding IPTG. M. W: molecular weight standard for SDS-PAGE; Lane 1: none-induced cells; Lanes 2 to 6: inductions of RhlA, RhlB, RhlC, RhlI and RhlG, respectively

Fig.3  Purification of (A) RhlA, (B) RhlB and (C) Rhl I from E. coli.

M.W: molecular weight standard for SDS-PAGE; T: total cell lysate; L: sample that was mixed with Ni2+-NTA resin; E1 and E2: purified fractions from Ni2+-NTA resin; G1 and G2: purified fractions from gel filtration chromatography; D: Western blot analysis of purified proteins using an anti-his antibody. Lanes 1, 2 and 3: purified RhlA, RhlB and RhlI, respectively

Fig.4  Homology models and folding of purified proteins in solution.

(A) (B) and (C) homology models of RhlA, RhlB and RhlI, respectively. Structures from N to C-termini are shown in blue to red. (D), (E) 1H NMR spectra of RhlA, RhlB and RhlI. Proton NMR for amide (D) and methyl (E) regions are shown. RhlA, B and I are shown in blue, red, and green, respectively. (F) 1H-15N-HSQC spectrum of RhlI. All spectra were collected on a Bruker 600 MHz and processed using Topspin (2.1)

1 Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495–508
https://doi.org/10.1007/s002530051648
2 Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47–64
3 Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428–434
https://doi.org/10.1007/s00253-001-0924-1
4 Lovaglio R B, Silva V L, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33(8): 1715–1726
https://doi.org/10.1016/j.biotechadv.2015.09.002
5 Dobler L, Vilela L F, Almeida R V, Neves B C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016, 33(1): 123–135
https://doi.org/10.1016/j.nbt.2015.09.005
6 Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(14): 1522–1554
https://doi.org/10.1080/10643389.2014.955631
7 Henkel M, Müller M M, Kügler J H, Lovaglio R B, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8): 1207–1219
https://doi.org/10.1016/j.procbio.2012.04.018
8 Müller M M, Kügler J H, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—next generation surfactants? Journal of Biotechnology, 2012, 162(4): 366–380
https://doi.org/10.1016/j.jbiotec.2012.05.022
9 Wittgens A, Tiso T, Arndt T T, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, . Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10(80), doi: 10.1186/1475-2859-10-80
10 Banat I M, Satpute S K, Cameotra S S, Patil R, Nyayanit N V. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 2014, 5: 697
11 Ochsner U A, Fiechter A, Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry, 1994, 269(31): 19787–19795
12 Rahim R, Ochsner U A, Olvera C, Graninger M, Messner P, Lam J S, Soberon-Chavez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001, 40(3): 708–718
https://doi.org/10.1046/j.1365-2958.2001.02420.x
13 Zhu K, Rock C O. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. Journal of Bacteriology, 2008, 190(9): 3147–3154
https://doi.org/10.1128/JB.00080-08
14 Ochsner U A, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424–6428
https://doi.org/10.1073/pnas.92.14.6424
15 Ochsner U A, Koch A K, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176(7): 2044–2054
https://doi.org/10.1128/jb.176.7.2044-2054.1994
16 Parsek M R, Val D L, Hanzelka B L, Cronan J E Jr, Greenberg E P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360–4365
https://doi.org/10.1073/pnas.96.8.4360
17 Miller D J, Zhang Y M, Rock C O, White S W. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2006, 281(26): 18025–18032
https://doi.org/10.1074/jbc.M601687200
18 Jiang Y, Camara M, Chhabra S R, Hardie K R, Bycroft B W, Lazdunski A, Salmond G P, Stewart G S, Williams P. In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanoyl-L-homoserine lactone. Molecular Microbiology, 1998, 28(1): 193–203
https://doi.org/10.1046/j.1365-2958.1998.00789.x
19 Hoang T T, Ma Y, Stern R J, McNeil M R, Schweizer H P. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: Purification of mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene, 1999, 237(2): 361–371
https://doi.org/10.1016/S0378-1119(99)00331-5
20 Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(Web Server issue): W252–258
21 Shinohara Y, Miyanaga A, Kudo F, Eguchi T. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Letters, 2014, 588(6): 995–1000
https://doi.org/10.1016/j.febslet.2014.01.060
22 Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS Journal, 2012, 279(17): 3251–3263
https://doi.org/10.1111/j.1742-4658.2012.08711.x
23 Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon J S, . Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12089–12094
https://doi.org/10.1073/pnas.1103165108
24 Parsek M R, Schaefer A L, Greenberg E P. Analysis of random and site-directed mutations in rhII, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Molecular Microbiology, 1997, 26(2): 301–310
https://doi.org/10.1046/j.1365-2958.1997.5741935.x
[1] Qingzhuo Wang, Shuang-Yan Tang, Sheng Yang. Genetic biosensors for small-molecule products: Design and applications in high-throughput screening[J]. Front. Chem. Sci. Eng., 2017, 11(1): 15-26.
[2] Ruizhao Wang, Xiaoli Gu, Mingdong Yao, Caihui Pan, Hong Liu, Wenhai Xiao, Ying Wang, Yingjin Yuan. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 89-99.
[3] Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[4] Seiichi Taguchi. Designer enzyme for green materials innovation: Lactate-polymerizing enzyme as a key catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(1): 139-142.
[5] Andrew Michelmore, Jason D. Whittle, James W. Bradley, Robert D. Short. Where physics meets chemistry: Thin film deposition from reactive plasmas[J]. Front. Chem. Sci. Eng., 2016, 10(4): 441-458.
[6] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[7] Mani Abirami, Krishnan Kannabiran. Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications[J]. Front. Chem. Sci. Eng., 2016, 10(4): 542-551.
[8] Minghui Sun, Chen Chen, Lihua Chen, Baolian Su. Hierarchically porous materials: Synthesis strategies and emerging applications[J]. Front. Chem. Sci. Eng., 2016, 10(3): 301-347.
[9] Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research[J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[10] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[11] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[13] Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions[J]. Front. Chem. Sci. Eng., 2016, 10(3): 432-439.
[14] Weixia Wang, Shuai Zhou, Zhong Xin, Yaoqi Shi, Shicheng Zhao. Polydimethylsiloxane assisted supercritical CO2 foaming behavior of high melt strength polypropylene grafted with styrene[J]. Front. Chem. Sci. Eng., 2016, 10(3): 396-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed