Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (2) : 410-420    https://doi.org/10.1007/s11705-020-1950-9
RESEARCH ARTICLE
A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation
Luanying He1, Yulin Chang1, Junhao Zhu1, Ying Bi1, Wenlin An1, Yiyang Dong1, Jia-Hui Liu1,2(), Shihui Wang1()
1. College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
 Download: PDF(7249 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Graphene oxide (GO) has been increasingly utilized in the fields of food, biomedicine, environment and other fields because of its benign biocompatible. We encapsulated two kinds of GO with different sizes on yeast cells with the assistance of polyelectrolytes poly (styrene sulfonic acid) sodium salt (PSS) and polyglutamic acid (PGA) (termed as Y@GO). The result does not show a significant difference between the properties of the two types of Y@GO (namely Y@GO1 and Y@GO2). The encapsulation layers are optimized as Yeast/PGA/PSS/PGA/GO/PGA/PSS based on the morphology, dispersity, colony-forming unit, and zeta potential. The encapsulation of GO increases the roughness of the yeast. It is proved that the Y@GO increases the survival time and enhance the activity of yeast cells. The GO shell improves the resistance of yeast cells against pH and salt stresses and extends the storage time of yeast cells.

Keywords GO      yeast      polyelectrolyte      cytoprotection      nanomaterials     
Corresponding Author(s): Jia-Hui Liu,Shihui Wang   
Just Accepted Date: 28 June 2020   Online First Date: 31 July 2020    Issue Date: 10 March 2021
 Cite this article:   
Luanying He,Yulin Chang,Junhao Zhu, et al. A cytoprotective graphene oxide-polyelectrolytes nanoshell for single-cell encapsulation[J]. Front. Chem. Sci. Eng., 2021, 15(2): 410-420.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1950-9
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I2/410
Fig.1  Schematic illustration of the LbL encapsulation of yeast cells.
Fig.2  AFM images of GO 1 (a) and GO 2 (b).
Fig.3  Microscope images of mixtures of yeast and GO as a function of GO concentration. (a?c) Yeast and GO 1 mixtures with GO 1 concentrations of 2, 5, or 10 mg·mL?1, respectively; (d?f) Yeast and GO 2 mixtures with GO 2 concentrations of 2, 5, or 10 mg·mL?1, respectively; (g) yeast alone.
Fig.4  Microscope images of Y@GO encapsulated with different layers. (a) Yeast/PGA; (b) Yeast/PGA/PSS; (c) Yeast/PGA/PSS/PGA; (d) Yeast/PGA/PSS/PGA/GO1; (e) Yeast/PGA/PSS/PGA/GO1/PGA; (f) Yeast/PGA/PSS/PGA/GO1/PGA/PSS; (g) Yeast/PGA/PSS/PGA/GO2; (h) Yeast/PGA/PSS/PGA/GO2/PGA; (i) Yeast/PGA/PSS/PGA/GO2/PGA/PSS.
Fig.5  The CFU and zeta potentials of Y@GO encapsulated with different layers.
Fig.6  SEM images of (a) yeast, (b) Y@P, (c) Y@GO1, and (d) Y@GO2.
Fig.7  The growth curves of Y@GO, Y@P, and yeast cells.
Fig.8  The effects of pH on the proliferation and storage of Y@GO, Y@P, and yeast cells. (a) CFUs of Y@GO1, Y@GO2, Y@P, and yeast cells under different pH values; (b–e) CFUs of yeast, Y@P, Y@GO1, and Y@GO2 after the storage at different pH values and incubation times.
Fig.9  The effects of NaCl concentration on the proliferation and storage of Y@GO, Y@P, and yeast cells. (a) CFUs of Y@GO1, Y@GO2, Y@P, and yeast cells under different NaCl concentrations; (b?e) CFUs of yeast, Y@P, Y@GO1, and Y@GO2 after the storage at different NaCl concentrations and incubation times.
1 J H Park, K Kim, J Lee, J Y Choi, D Hong, S H Yang, F Caruso, Y Lee, I S Choi. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angewandte Chemie, 2014, 126(46): 12628–12633
https://doi.org/10.1002/ange.201405905
2 J K Lin, X Y Wang, R K Tang. Regulations of organism by materials: a new understanding of biological inorganic chemistry. Journal of Biological Inorganic Chemistry, 2019, 24(4): 467–481
https://doi.org/10.1007/s00775-019-01673-2
3 T S Sreeprasad, P Nguyen, A Alshogeathri, L Hibbeler, F Martinez, N McNeil, V Berry. Graphene quantum dots interfaced with single bacterial spore for bio-electromechanical devices: a graphene cytobot. Scientific Reports, 2015, 5(1): 9138
https://doi.org/10.1038/srep09138
4 H Lee, D Hong, J Y Choi, J Y Kim, S H Lee, H M Kim, S H Yang, I S Choi. Layer-by-layer-based silica encapsulation of individual yeast with thickness control. Chemistry, an Asian Journal, 2015, 10(1): 129–132
https://doi.org/10.1002/asia.201402993
5 B Wang, P Liu, W Jiang, H Pan, X Xu, R Tang. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization. Angewandte Chemie, 2008, 120(19): 3616–3620
https://doi.org/10.1002/ange.200704718
6 Q X Wu, Y X Guan, S J Yao. Sodium cellulose sulfate: a promising biomaterial used for microcarriers’ designing. Frontiers of Chemical Science and Engineering, 2019, 13(1): 46–58
https://doi.org/10.1007/s11705-018-1723-x
7 I Benucci, M Cerreti, D Maresca, G Mauriello, M Esti. Yeast cells in double layer calcium alginate-chitosan microcapsules for sparkling wine production. Food Chemistry, 2019, 300: 1–10
https://doi.org/10.1016/j.foodchem.2019.125174
8 P K Soma, P D Williams, Y M Lo. Advancements in non-starch polysaccharides researchfor frozen foods and microencapsulation of probiotics. Frontiers of Chemical Engineering in China, 2009, 3(4): 413–426
https://doi.org/10.1007/s11705-009-0254-x
9 M R Dzamukova, E A Naumenko, N I Lannik, R F Fakhrullin. Surface-modified magnetic human cells for scaffold-free tissue engineering. Biomaterials Science, 2013, 1(8): 810–813
https://doi.org/10.1039/c3bm60054h
10 J H Park, D Hong, J Lee, I S Choi. Cell-in-shell hybrids: chemical nanoencapsulation of individual cells. Accounts of Chemical Research, 2016, 49(5): 792–800
https://doi.org/10.1021/acs.accounts.6b00087
11 C C Chen, H J Lin, W J Lu, J J Wu, C H Chew, C H Wong, C Y Yang, H T V Lin. Enhanced repeated-batch bioethanol fermentation of red seaweeds hydrolysates using microtube array membrane-encapsulated yeast. Journal of Biobased Materials and Bioenergy, 2020, 14(1): 138–145
https://doi.org/10.1166/jbmb.2020.1932
12 I Drachuk, O Shchepelina, S Harbaugh, N Kelley-Loughnane, M Stone, V V Tsukruk. Cell surface engineering with edible protein nanoshells. Small, 2013, 9(18): 3128–3137
https://doi.org/10.1002/smll.201202992
13 S A Konnova, I R Sharipova, T A Demina, Y N Osin, D R Yarullina, O N Ilinskaya, Y M Lvov, R F Fakhrullin. Biomimetic cell-mediated three-dimensional assembly of halloysite nanotubes. Chemical Communications, 2013, 49(39): 4208–4210
https://doi.org/10.1039/c2cc38254g
14 J Lee, S H Yang, S P Hong, D Hong, H Lee, H Y Lee, Y G Kim, I S Choi. Chemical control of yeast cell division by cross-linked shells of catechol-grafted polyelectrolyte multilayers. Macromolecular Rapid Communications, 2013, 34(17): 1351–1356
https://doi.org/10.1002/marc.201300444
15 B J Kim, T Park, S Y Park, S W Han, H S Lee, Y G Kim, I S Choi. Control of microbial growth in alginate/polydopamine core/shell microbeads. Chemistry, an Asian Journal, 2015, 10(10): 2130–2133
https://doi.org/10.1002/asia.201500360
16 E I Rabea, E T Badawy, C V Stevens, G Smagghe, W Steurbaut. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 2003, 4(6): 1457–1465
https://doi.org/10.1021/bm034130m
17 I Drachuk, M K Gupta, V V Tsukruk. Biomimetic coatings to control cellular function through cell surface engineering. Advanced Functional Materials, 2013, 23(36): 4437–4453
https://doi.org/10.1002/adfm.201300038
18 S A Konnova, Y M Lvov, R F Fakhrullin. Magnetic halloysite nanotubes for yeast cell surface engineering. Clay Minerals, 2018, 51(3): 429–433
https://doi.org/10.1180/claymin.2016.051.3.07
19 S K Kiran, S Shukla, A Struck, S Saxena. Surface engineering of graphene oxide shells using lamellar LDH nanostructures. ACS Applied Materials & Interfaces, 2019, 11(22): 20232–20240
https://doi.org/10.1021/acsami.8b21265
20 Y Dong, Y Chang, H Gao, V A León Anchustegui, Q Yu, H Wang, J H Liu, S Wang. Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions. Toxicology Research, 2019, 8(6): 908–917
https://doi.org/10.1039/c9tx00146h
21 H Gao, J H Liu, V A L Anchustegui, Y Chang, J Zhang, Y Dong. The protective effects of graphene oxide against the stress from organic solvent by covering Hela cells. Current Nanoscience, 2019, 15(4): 412–419
https://doi.org/10.2174/1573413714666180821112731
22 R F Fakhrullin, A I Zamaleeva, M V Morozov, D I Tazetdinova, F K Alimova, A K Hilmutdinov, R I Zhdanov, M Kahraman, M Culha. Living fungi cells encapsulated in polyelectrolyte shells doped with metal nanoparticles. Langmuir, 2009, 25(8): 4628–4634
https://doi.org/10.1021/la803871z
23 C Doonan, R Ricco, K Liang, D Bradshaw, P Falcaro. Metal-organic frameworks at the biointerface: synthetic strategies and applications. Accounts of Chemical Research, 2017, 50(6): 1423–1432
https://doi.org/10.1021/acs.accounts.7b00090
24 A Rezaei, M Fathi, S M Jafari. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids, 2019, 88: 146–162
https://doi.org/10.1016/j.foodhyd.2018.10.003
25 O Schlesinger, L Alfonta. Encapsulation of microorganisms, enzymes, and redox mediators in graphene oxide and reduced graphene oxide. Methods in Enzymology, 2018, 609: 197–219
https://doi.org/10.1016/bs.mie.2018.05.008
26 S K Smart, A I Cassady, G Q Lu, D J Martin. The biocompatibility of carbon nanotubes. Carbon, 2006, 44(6): 1034–1047
https://doi.org/10.1016/j.carbon.2005.10.011
27 M H Wahid, E Eroglu, S M LaVars, K Newton, C T Gibson, U H Stroeher, X J Chen, R A Boulos, C L Raston, S L Harmer. Microencapsulation of bacterial strains in graphene oxide nano-sheets using vortex fluidics. RSC Advances, 2015, 5(47): 37424–37430
https://doi.org/10.1039/C5RA04415D
[1] Xiuzhen Wei, Xufeng Xu, Yi Chen, Qian Zhang, Lu Liu, Ruiyuan Yang, Jinyuan Chen, Bosheng Lv. Preparation and properties of hollow fibre nanofiltration membrane with continuous coffee-ring structure[J]. Front. Chem. Sci. Eng., 2021, 15(2): 351-362.
[2] Yingjie Ma, Nan Zhang, Jie Li, Cuiwen Cao. Optimal design of extractive dividing-wall column using an efficient equation-oriented approach[J]. Front. Chem. Sci. Eng., 2021, 15(1): 72-89.
[3] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[4] Ximei Zhao, Matthias Rudolph, Abdullah M. Asiri, A. Stephen K. Hashmi. Easy access to pharmaceutically relevant heterocycles by catalytic reactions involving α-imino gold carbene intermediates[J]. Front. Chem. Sci. Eng., 2020, 14(3): 317-349.
[5] Bhaskar Gurram, Miao Li, Jiangli Fan, Jingyun Wang, Xiaojun Peng. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells[J]. Front. Chem. Sci. Eng., 2020, 14(1): 41-52.
[6] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[7] Sona Jain, Zhicheng Huang, Brent R. Dixon, Syed Sattar, Juewen Liu. Cryptosporidium parvum oocyst directed assembly of gold nanoparticles and graphene oxide[J]. Front. Chem. Sci. Eng., 2019, 13(3): 608-615.
[8] Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Front. Chem. Sci. Eng., 2019, 13(3): 427-443.
[9] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[10] Vo-Van Giau, Yoon-Hee Park, Kyu-Hwan Shim, Sang-Wook Son, Seong-Soo A. An. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media[J]. Front. Chem. Sci. Eng., 2019, 13(1): 90-97.
[11] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[12] Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song. Al2O3 and CeO2-promoted MgO sorbents for CO2 capture at moderate temperatures[J]. Front. Chem. Sci. Eng., 2018, 12(1): 83-93.
[13] Ting Yuan, Yakun Guo, Junkai Dong, Tianyi Li, Tong Zhou, Kaiwen Sun, Mei Zhang, Qingyu Wu, Zhen Xie, Yizhi Cai, Limin Cao, Junbiao Dai. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 107-116.
[14] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
[15] Christian Bortolini,Mingdong Dong. Cystine oligomers successfully attached to peptide cysteine-rich fibrils[J]. Front. Chem. Sci. Eng., 2016, 10(1): 99-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed