Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2023, Vol. 17 Issue (1) : 102-115    https://doi.org/10.1007/s11705-022-2179-6
RESEARCH ARTICLE
Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction
Lihong Chen1, Ruxin Deng1, Shaoshi Guo1, Zihuan Yu1, Huiqin Yao2(), Zhenglong Wu3(), Keren Shi4, Huifeng Li1(), Shulan Ma1()
1. Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
2. School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
3. Analytical and Testing Center, Beijing Normal University, Beijing 100875, China
4. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
 Download: PDF(16299 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

Keywords oxygen evolution reaction      electrocatalysts      ternary layered double hydroxides      long-term stability     
Corresponding Author(s): Huiqin Yao,Zhenglong Wu,Huifeng Li,Shulan Ma   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Online First Date: 18 August 2022    Issue Date: 21 February 2023
 Cite this article:   
Lihong Chen,Ruxin Deng,Shaoshi Guo, et al. Synergistic effect of V and Fe in Ni/Fe/V ternary layered double hydroxides for efficient and durable oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2023, 17(1): 102-115.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2179-6
https://academic.hep.com.cn/fcse/EN/Y2023/V17/I1/102
Fig.1  Schematic illustration of the synthesis of NiFeV-LDH derived from Ni foam via a one-pot hydrothermal reaction.
Fig.2  XRD patterns of (a) NiFeV-LDH, (b) NiFe-LDH and (c) NiV-LDH (d-values in nm).
Fig.3  (a) SEM image; (b) EDS elemental mapping (Ni, Fe and V); (c) TEM image; (d) HRTEM image of NiFeV-LDH.
Fig.4  (a) XPS survey and (b–d) XPS spectra with the deconvolution of corresponding XPS peaks: (b) Ni 2p of NiV-LDH, NiFe-LDH, and NiFeV-LDH, (c) Fe 2p of NiFe-LDH and NiFeV-LDH, (d) V 2p of NiV-LDH and NiFeV-LDH.
Fig.5  (a) iR drop uncompensated OER LSV of NiFeV-LDH, NiFe-LDH, NiV-LDH, RuO2 and Ni foam in 1.0 mol·L–1 KOH acquired with 5.0 mV·s–1; (b) CA responses of NiFeV-LDH in 1.0 mol·L–1 KOH for 180 s, plots of sampled current densities against potential with (c) zero and (d) 40% iR drop compensation for NiFeV-LDH, NiV-LDH, RuO2 and Ni foam, (e) the corresponding Tafel plots.
Fig.6  (a) CV curves of NiFeV-LDH, NiFe-LDH, NiV-LDH and Ni foam; (b) the corresponding area of redox features considered for the calculation of the number of active sites; (c) absolute ECSA calculated by dividing the elementary charge of an electron for NiFeV-LDH, NiFe-LDH, NiV-LDH and Ni foam; (d) plots of the relative ECSA normalized sampled current densities against the iR corrected potential; (e) plots of TOF values as a function of potential.
Fig.7  Nyquist plots of (a) NiFeV-LDH, (c) NiFe-LDH, (e) NiV-LDH acquired at 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75 V vs. RHE and (b, d, f) their corresponding Bode absolute impedance plots, (g, h) plots of Rct values against 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75 V vs. RHE for NiFeV-LDH, NiFe-LDH, NiV-LDH, RuO2 and Ni foam.
Fig.8  (a) CA curves of NiFeV-LDH, NiFe-LDH and NiV-LDH; (b) LSV curves recorded for NiFeV-LDH before and after the It test (75 h); (c) XRD pattern of NiFeV-LDH after the OER durability test; (d) SEM images of NiFeV-LDH before and after the durability test; XPS spectra of (e) Fe 2p and (f) V 2p for NiFeV-LDH before and after the OER durability test.
1 Silva Veras T da, T S Mozer, Costa Rubim Messeder dos Santos D da, Silva César A da. Hydrogen: trends, production and characterization of the main process worldwide. International Journal of Hydrogen Energy, 2017, 42( 4): 2018– 2033
https://doi.org/10.1016/j.ijhydene.2016.08.219
2 J S Kim, B Kim, H Kim, K Kang. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Advanced Energy Materials, 2018, 8( 11): 1702774
https://doi.org/10.1002/aenm.201702774
3 N T Suen, S F Hung, Q Quan, N Zhang, Y J Xu, H M Chen. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017, 46( 2): 337– 365
https://doi.org/10.1039/C6CS00328A
4 Y Li, Y Sun, Y Qin, W Zhang, L Wang, M Luo, H Yang, S Guo. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Advanced Energy Materials, 2020, 10( 11): 1903120
https://doi.org/10.1002/aenm.201903120
5 Q Wang, D O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112( 7): 4124– 4155
https://doi.org/10.1021/cr200434v
6 S Anantharaj, K Karthick, M Venkatesh, T V S V Simha, A S Salunke, L Ma, H Liang, S Kundu. Enhancing electrocatalytic total water splitting at few layer Pt−NiFe layered double hydroxide interfaces. Nano Energy, 2017, 39 : 30– 43
https://doi.org/10.1016/j.nanoen.2017.06.027
7 L Hu, M Li, X Wei, H Wang, Y Wu, J Wen, W Gu, C Zhu. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chemical Engineering Journal, 2020, 398 : 125605
https://doi.org/10.1016/j.cej.2020.125605
8 K Fan, H Chen, Y Ji, H Huang, P M Claesson, Q Daniel, B Philippe, H Rensmo, F Li, Y Luo, L Sun. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature Communications, 2016, 7( 1): 11981
https://doi.org/10.1038/ncomms11981
9 J M Goncalves, P R Martins, L Angnes, K Araki. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New Journal of Chemistry, 2020, 44( 24): 9981– 9997
https://doi.org/10.1039/D0NJ00021C
10 Y Bi, Z Cai, D Zhou, Y Tian, Q Zhang, Q Zhang, Y Kuang, Y Li, X Sun, X Duan. Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2018, 358 : 100– 107
https://doi.org/10.1016/j.jcat.2017.11.028
11 Z Wang, W Liu, Y Hu, L Xu, M Guan, J Qiu, Y Huang, J Bao, H Li. An Fe-doped NiV LDH ultrathin nanosheet as a highly efficient electrocatalyst for efficient water oxidation. Inorganic Chemistry Frontiers, 2019, 6( 7): 1890– 1896
https://doi.org/10.1039/C9QI00404A
12 S Anantharaj, S Kundu, S Noda. “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy, 2021, 80 : 105514
https://doi.org/10.1016/j.nanoen.2020.105514
13 S Anantharaj, K Karthick, S Kundu. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: a review with insights on structure, activity and mechanism. Materials Today. Energy, 2017, 6 : 1– 26
https://doi.org/10.1016/j.mtener.2017.07.016
14 F Nur Indah Sari, S Abdillah, J M Ting. FeOOH-containing hydrated layered iron vanadate electrocatalyst for superior oxygen evolution reaction and efficient water splitting. Chemical Engineering Journal, 2021, 416 : 129165
https://doi.org/10.1016/j.cej.2021.129165
15 W Bao, L Xiao, J Zhang, Z Deng, C Yang, T Ai, X Wei. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chemical Communications (Cambridge), 2020, 56( 65): 9360– 9693
https://doi.org/10.1039/D0CC03760E
16 K Fan, Y Ji, H Zou, J Zhang, B Zhu, H Chen, Q Daniel, Y Luo, J Yu, L Sun. Hollow iron-vanadium composite spheres: a highly efficient iron-based water oxidation electrocatalyst without the need for nickel or cobalt. Angewandte Chemie International Edition, 2017, 56( 12): 3289– 3293
https://doi.org/10.1002/anie.201611863
17 H Sun, X Xu, Y Song, W Zhou, Z Shao. Designing high-valence metal sites for electrochemical water splitting. Advanced Functional Materials, 2021, 31( 16): 2009779
https://doi.org/10.1002/adfm.202009779
18 J Yu, F Yang, G Cheng, W Luo. Construction of a hierarchical NiFe layered double hydroxide with a 3D mesoporous structure as an advanced electrocatalyst for water oxidation. Inorganic Chemistry Frontiers, 2018, 5( 8): 1795– 1799
https://doi.org/10.1039/C8QI00314A
19 L Zeng, L Yang, J Lu, J Jia, J Yu, Y Deng, M Shao, W Zhou. One-step synthesis of Fe−Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chinese Chemical Letters, 2018, 29( 12): 1875– 1878
https://doi.org/10.1016/j.cclet.2018.10.026
20 P Li, X Duan, Y Kuang, Y Li, G Zhang, W Liu, X Sun. Tuning electronic structure of NiFe layered double hydroxides with vanadium doping toward high efficient electrocatalytic water oxidation. Advanced Energy Materials, 2018, 8( 15): 1703341
https://doi.org/10.1002/aenm.201703341
21 T Tang, W J Jiang, S Niu, N Liu, H Luo, Y Y Chen, S F Jin, F Gao, L J Wan, J S Hu. Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting. Journal of the American Chemical Society, 2017, 139( 24): 8320– 8328
https://doi.org/10.1021/jacs.7b03507
22 J X Wang, Y Zhang, C B Capuano, K E Ayers. Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts. Scientific Reports, 2015, 5( 1): 12220
https://doi.org/10.1038/srep12220
23 S Miyata. Anion-exchange properties of hydrotalcite-like compounds. Clays and Clay Minerals, 1983, 31( 4): 305– 311
https://doi.org/10.1346/CCMN.1983.0310409
24 C Forano, U Costantino, V Prévot, C T Gueho. Developments in Clay Science. 2nd ed. Amsterdam: Elsevier, 2013, 745– 782
25 N R Palapa, Y Saria, T Taher, R Mohadi, A Lesbani. Synthesis and characterization of Zn/Al, Zn/Fe, and Zn/Cr layered double hydroxides: effect of M3+ ions toward layer formation. Science and Technology Indonesia, 2019, 4( 2): 36– 39
https://doi.org/10.26554/sti.2019.4.2.36-39
26 Y Liu, Y Z Wang. Preparation and characterization of layered double hydroxide with different metallic ions. Chemical Research and Application, 2009, 21( 6): 883– 887
27 U Schwertmann, G Pfab. Structural vanadium in synthetic geothite. Geochimica et Cosmochimica Acta, 1994, 58( 20): 4349– 4352
https://doi.org/10.1016/0016-7037(94)90338-7
28 Y Song, M Song, P Liu, W Liu, L Yuan, X Hao, L Pei, B Xu, J Guo, Z Sun. Fe-doping induced localized amorphization in ultrathin α-Ni(OH)2 nanomesh for superior oxygen evolution reaction catalysis. Journal of Materials Chemistry A, 2021, 9( 25): 14372– 14380
https://doi.org/10.1039/D1TA02341A
29 S Anantharaj, S Noda. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small, 2020, 16( 2): 1905779
https://doi.org/10.1002/smll.201905779
30 H W Nesbitt, D Legrand, G M Bancroft. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 2000, 27( 5): 357– 366
https://doi.org/10.1007/s002690050265
31 Y Feng, Z Li, S Li, M Yang, R Ma, J Wang. One stone two birds: vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting. Journal of Energy Chemistry, 2022, 66 : 493– 501
https://doi.org/10.1016/j.jechem.2021.08.061
32 K Leng, C Zhang, X Li, C Hou, Y Sun. Iron-containing MIL-101(Cr) as highly active and stable heterogeneous catalysts for the benzylation of aromatics with benzyl chloride. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120( 1): 345– 357
https://doi.org/10.1007/s11144-016-1084-8
33 G Silversmit, D Depla, H Poelman, G B Marin, R De Gryse. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004, 135( 2–3): 167– 175
https://doi.org/10.1016/j.elspec.2004.03.004
34 J Wang, T Liao, Z Wei, J Sun, J Guo, Z Sun. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: an electronic structure tuning strategy. Small Methods, 2021, 5( 4): 2000988
https://doi.org/10.1002/smtd.202000988
35 Y Yang, L Dang, M J Shearer, H Sheng, W Li, J Chen, P Xiao, Y Zhang, R J Hamers, S Jin. Highly active trimetallic NiFeCr layered double hydroxide electrocatalysts for oxygen evolution reaction. Advanced Energy Materials, 2018, 8( 15): 1703189
https://doi.org/10.1002/aenm.201703189
36 B Zhang, X Zheng, O Voznyy, R Comin, M Bajdich, M Garcia-Melchor, L L Han, J X Xu, M Liu, L R Zheng, de Arquer F P García, C T Dinh, F Fan, M Yuan, E Yassitepe, N Chen, T Regier, P Liu, Y Li, Luna P De, A Janmohamed, H L Xin, H Yang, A Vojvodic, E H Sargent. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352( 6283): 333– 337
https://doi.org/10.1126/science.aaf1525
37 J Bao, Z Wang, J Xie, L Xu, F Lei, M Guan, Y Zhao, Y Huang, H Li. A ternary cobalt-molybdenum-vanadium layered double hydroxide nanosheet array as an efficient bifunctional electrocatalyst for overall water splitting. Chemical Communications (Cambridge), 2019, 55( 24): 3521– 3524
https://doi.org/10.1039/C9CC00269C
38 Y Hu, Z Wang, W Liu, L Xu, M Guan, Y Huang, Y Zhao, J Bao, H M Li. Novel cobalt-iron-vanadium layered double hydroxide nanosheet arrays for superior water oxidation performance. ACS Sustainable Chemistry & Engineering, 2019, 7( 19): 16828– 16834
https://doi.org/10.1021/acssuschemeng.9b04364
39 Y X Zhu, M Liu, G Y Hou, Y P Tang, L K Wu. The release of metal ions induced surface reconstruction of layered double hydroxide electrocatalysts. Sustainable Energy & Fuels, 2021, 5( 13): 3436– 3444
https://doi.org/10.1039/D1SE00529D
40 S Anantharaj, S Kundu, S Noda. Worrisome exaggeration of activity of electrocatalysts destined for steady-state water electrolysis by polarization curves from transient techniques. Journal of the Electrochemical Society, 2022, 169( 1): 014508
https://doi.org/10.1149/1945-7111/ac47ec
41 S Anantharaj, S R Ede, K Karthick, S Sam Sankar, K Sangeetha, P E Karthik, S Kundu. Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy & Environmental Science, 2018, 11( 4): 744– 771
https://doi.org/10.1039/C7EE03457A
42 K Zhang, R Zou. Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small, 2021, 17( 37): 2100129
https://doi.org/10.1002/smll.202100129
43 S Anantharaj, S Kundu. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting?. ACS Energy Letters, 2019, 4( 6): 1260– 1264
https://doi.org/10.1021/acsenergylett.9b00686
44 S Anantharaj, P E Karthik, S Noda. The significance of properly reporting turnover frequency in electrocatalysis research. Angewandte Chemie International Edition, 2021, 60( 43): 23051– 23067
https://doi.org/10.1002/anie.202110352
45 S Anantharaj, H Sugime, S Noda. Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 408 : 127275
https://doi.org/10.1016/j.cej.2020.127275
46 L Trotochaud, S L Young, J K Ranney, S W Boettcher. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation. Journal of the American Chemical Society, 2014, 136( 18): 6744– 6753
https://doi.org/10.1021/ja502379c
47 M Sun, X R Ru, L F Zhai. In-situ fabrication of supported iron oxides from synthetic acid mine drainage: high catalytic activities and good stabilities towards electro-Fenton reaction. Applied Catalysis B: Environmental, 2015, 165 : 103– 110
https://doi.org/10.1016/j.apcatb.2014.09.077
48 J Bai, J Mei, T Liao, Q Sun, Z G Chen, Z Sun. Molybdenum-promoted surface reconstruction in polymorphic cobalt for initiating rapid oxygen evolution. Advanced Energy Materials, 2022, 12( 5): 2103247
https://doi.org/10.1002/aenm.202103247
49 K N Dinh, P L Zheng, Z F Dai, Y Zhang, R Dangol, Y Zheng, B Li, Y Zong, Q Y Yan. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14( 8): 1703257
https://doi.org/10.1002/smll.201703257
50 Z Wang, S Zeng, W Liu, X Wang, Q Li, Z Zhao, F Geng. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9( 2): 1488– 1495
https://doi.org/10.1021/acsami.6b13075
[1] FCE-22007-of-CL_suppl_1 Download
[1] Lingtao Kong, Zhouxun Li, Hui Zhang, Mengmeng Zhang, Jiaxing Zhu, Mingli Deng, Zhenxia Chen, Yun Ling, Yaming Zhou. Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1114-1124.
[2] Hongtao Xie, Qin Geng, Xiaoyue Liu, Jian Mao. Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO2 heterostructures[J]. Front. Chem. Sci. Eng., 2022, 16(3): 376-383.
[3] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[4] Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
[5] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
[6] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed