Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (11) : 1536-1559    https://doi.org/10.1007/s11705-022-2221-8
REVIEW ARTICLE
Solvent-resistant porous membranes using poly(ether−ether ketone): preparation and application
Lixin Xing1,2, Jiaming Wang1,2, Xuehua Ruan1,2(), Gaohong He1,2()
1. State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
2. School of Chemical Engineering at Panjin Campus, Dalian University of Technology, Panjin 124221, China
 Download: PDF(4679 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Poly(ether−ether ketone) (PEEK) is a linear aromatic macromolecule, which can form semi-crystalline aggregative status, allowing PEEK materials to have strong environment tolerance and excellent physicochemical properties. PEEK materials have become a promising alternative to fabricate particular membranes used in extreme conditions. In the past few decades, many researches and evolutions have emerged in membrane fabrication with PEEK materials and its applications for treating organic solvents and their mixtures; however, there are little systematic and comprehensive literature to summarize fabrication approaches, compile applications, and elaborate PEEK property-structure relationship. In this review, the main approaches to fabricate PEEK-based membranes are illustrated concretely, including conventional thermal-induced and non-solvent-induced phase separation, and novel chemical-induced crystallization; the representative applications in ultrafiltration, nanofiltration and membrane contactor containing organic solvents are demonstrated systematically. Meanwhile, the mechanism to tune PEEK solubility in solvents, which can be achieved by altering monomers in synthesis processes or changing membrane preparation routes, is deeply analyzed. Moreover, the existing problems and the future prospects are also discussed. This review provides positive guidance for designing and fabricating membranes using PEEK and its derivative materials for task-specific applications in harsh conditions.

Keywords PEEK      phase inversion      solvent-resistant membrane      nanofiltration      membrane contactor     
Corresponding Author(s): Xuehua Ruan,Gaohong He   
Online First Date: 09 November 2022    Issue Date: 13 December 2022
 Cite this article:   
Lixin Xing,Jiaming Wang,Xuehua Ruan, et al. Solvent-resistant porous membranes using poly(ether−ether ketone): preparation and application[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1536-1559.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2221-8
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I11/1536
Physical propertyNominal value
Specific gravity1.30 to 1.37
Molding shrinkage (flow 23 °C)0.001 to 0.016 m·m–1
Water absorption (23 °C, 24 h)0.049% to 0.21%
Mechanical
Tensile modulus (23 °C)2612 to 4770 MPa
Tensile strength (yield, 23 °C)72 to 111 MPa
Tensile strength (break, 23 °C)70 to 99 MPa
Flexural modulus (23 °C)2909 to 4432 MPa
Flexural strength (23 °C)116 to 155 MPa
Coefficient of friction0.08 to 0.53
Thermal
Glass-transition temperature (Tg)143 °C
Melting temperature (Tm)343 °C
Soluble
Solubility parameters/(cal·cm–3)1/2
δd10.07
δp2.28
δh3.03
δ10.76
Tab.1  Typical properties of PEEKs [16,17]
  Scheme1 The molecular structure of PEEK.
Fig.1  Distribution models of the PEI in the PEEK crystalline region.
  Scheme2 Mechanism of PEI chemical decomposition by ethanolamine.
Fig.2  Membrane preparation process via NIPS and a two-step NIPS (temperature = 25 °C, relative humidity = 37% ± 3%). Reprinted with permission from Ref. [59], copyright 2022, Springer.
  Scheme3 The synthetic route of (a) DFKI monomer and (b) PEEKI polymer.
Fig.3  Schematic illustration of PEEKI membrane transformed to PEEK counterpart. Reprinted with permission from Ref. [24], copyright 2021, Elsevier.
  Scheme4 The molecular structure of PEEKWC.
Polymer abbreviationSolventPermeanceg)/(L·m–2·h–1·bar–1)Solute (MWCO, Da)RejectionRef.
PEEKa)DMF0.07Polystyrene (480)90%[100]
PEEKa)THF0.47Polystyrene (300)90%[53]
PEEKa)DMF0.97RD 80 (1373)99.9%[66]
PEEKa)Waterh)225225170BSA (66446)RB (1017)Methyl blue, MB (800)92%90%90%[60]
PEEKa)DMF4.194.197.68PB (305)SY (452)RB (1017)71.7%96.2%97.5%[24]
PEEKWCb)Isopropanol1.00RB (1017)Safranine (351)99.8%52%[101]
TBPEEKc)Isopropanol0.77RB (1017)RA (479)88.3%49.6%[102]
BPAPEEKd)Isopropanol0.78RB (1017)RA (479)89%63.6%[103]
Hexane diamine (HDA) Crosslinked VAPEEKe)AcetoneIsopropanol0.190.11RB (1017)90%[104]
BPAVAPEEKf) (cross-linked polyallylamine, PAA)IsopropanolAcetone0.030.17RB (1017)Sunflower oil90%94%[105]
Tab.2  Properties of PEEK-based NF membranes
Fig.4  Molecular structure of PEEK-based polymers in Tab.2.
Fig.5  Illustration for preparing the PEEK-SPEEK NF membrane. Reprinted with permission from Ref. [11], copyright 2021, Elsevier.
Fig.6  (a) Long-term operation stability of membrane for CR/NaCl mixtures solution; (b) CR rejection and pure water flux variations of PEEK-SPEEK membrane and NF1 after washing with ethanol in one cycle; (c) recycling properties of PEEK-SPEEK (3 wt %) membrane during CR (15 mg·L–1) filtration; (d) digital images of membranes before (left) and after (right) cleaning during the continuous operation. The test pressure was 3 bar. Reprinted with permission from Ref. [11], copyright 2021, Elsevier.
Fig.7  Process diagram of membrane contactor: the left side is the membrane extraction section, and the right side is the membrane stripping section. Reprinted with permission from Ref. [56], copyright 2019, Elsevier.
Fig.8  Tests of organic resistance of PEEK membrane. (a) Li+ stripping flux change of PEEK membrane in a dynamic test of 504 h; (b) weight change of PEEK membrane in different solvents, soak time: 1320 h. Reprinted with permission from Ref. [56], copyright 2019, Elsevier.
Fig.9  (a) Scale-up of membrane cartridge; (b) process flow diagram of the membrane contactor system used in field testing. Reprinted with permission from Ref. [130], copyright 2017, Elsevier.
1 H W H Lai, F M Benedetti, J M Ahn, A M Robinson, Y Wang, I Pinnau, Z P Smith, Y Xia. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science, 2022, 375(6587): 1390–1392
https://doi.org/10.1126/science.abl7163
2 Z Tan, S Chen, X Peng, L Zhang, C Gao. Polyamide membranes with nanoscale turing structures for water purification. Science, 2018, 360(6388): 518–521
https://doi.org/10.1126/science.aar6308
3 L Hu, L Gao, M Di, X Jiang, X Wu, X Yan, X Li, G He. Ion/molecule-selective transport nanochannels of membranes for redox flow batteries. Energy Storage Materials, 2021, 34: 648–668
https://doi.org/10.1016/j.ensm.2020.10.008
4 D S Sholl, R P Lively. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
https://doi.org/10.1038/532435a
5 M Padaki, R S Murali, M S Abdullah, N Misdan, A Moslehyani, M A Kassim, N Hilal, A F Ismail. Membrane technology enhancement in oil–water separation. A review. Desalination, 2015, 357: 197–207
https://doi.org/10.1016/j.desal.2014.11.023
6 M Di, X Sun, L Hu, L Gao, J Liu, X Yan, X Wu, X Jiang, G He. Hollow COF selective layer based flexible composite membranes constructed by an integrated “casting-precipitation-evaporation” strategy. Advanced Functional Materials, 2022, 32(22): 2111594
https://doi.org/10.1002/adfm.202111594
7 V Vatanpour, B Kiskan, B Zeytuncu, I Koyuncu. Polybenzoxazines in fabrication of separation membranes: a review. Separation and Purification Technology, 2021, 278: 119562
https://doi.org/10.1016/j.seppur.2021.119562
8 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): 6343
https://doi.org/10.1126/science.aab0530
9 H R Zuo, P Shi, M Duan. A review on thermally stable membranes for water treatment: material, fabrication, and application. Separation and Purification Technology, 2020, 236: 116223
https://doi.org/10.1016/j.seppur.2019.116223
10 Z Cheng, S Li, Y Liu, Y Zhang, Z Ling, M Yang, L Jiang, Y Song. Post-combustion CO2 capture and separation in flue gas based on hydrate technology: a review. Renewable & Sustainable Energy Reviews, 2022, 154: 111806
https://doi.org/10.1016/j.rser.2021.111806
11 N Cao, C Yue, Z Lin, W Li, H Zhang, J Pang, Z Jiang. Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. Journal of Hazardous Materials, 2021, 414: 125489
https://doi.org/10.1016/j.jhazmat.2021.125489
12 M M Omrani, A Hadjizadeh, A Milani, K Kim. PEEK surface modification methods and effect of the laser method on surface properties. Biointerface Research in Applied Chemistry, 2020, 10(2): 5132–5140
https://doi.org/10.33263/BRIAC102.132140
13 H Alqurashi, Z Khurshid, A U Y Syed, S R Habib, D Rokaya, M S Zafar. Polyetherketoneketone (PEKK): an emerging biomaterial for oral implants and dental prostheses. Journal of Advanced Research, 2021, 28: 87–95
https://doi.org/10.1016/j.jare.2020.09.004
14 P Feng, P Wu, C Gao, Y Yang, W Guo, W Yang, C Shuai. A multimaterial scaffold with tunable properties: toward bone tissue repair. Advanced Science, 2018, 5(6): 1700817
https://doi.org/10.1002/advs.201700817
15 Z Lin, N Cao, Z Sun, W Li, Y Sun, H Zhang, J Pang, Z Jiang. Based on confined polymerization: in situ synthesis of PANI/PEEK composite film in One-Step. Advanced Science, 2022, 9(1): 2103706
https://doi.org/10.1002/advs.202103706
16 A Leon, T Silva, K D Pangilinan, Q Chen, R C Advincula. High performance polymers for oil and gas applications. Reactive & Functional Polymers, 2021, 162(44): 104878
https://doi.org/10.1016/j.reactfunctpolym.2021.104878
17 T Huang, J Song, H He, Y B Zhang, X M Li, T He. Impact of SPEEK on PEEK membranes: demixing, morphology and performance enhancement in lithium membrane extraction. Journal of Membrane Science, 2020, 615: 118448
https://doi.org/10.1016/j.memsci.2020.118448
18 Y Liu. Study on synthesis and properties of polyaromatic ether ketone. Dissertation for the Master Degree. Nanchang: Jiangxi Normal University, 2005
19 K Thomas, H Ritter. Functionalized poly(ether ether ketones) from 4,4-bis(4-hydroxyphenyl)pentanoic acid, 2,2′-isopropylidenediphenol, and 4,4′-difluorobenzophenone: synthesis, behavior, and polymer analogous amidation of the carboxylic groups. Macromolecules, 1995, 28(14): 4806–4809
https://doi.org/10.1021/ma00118a004
20 M Mourgues Martin, A Bernes, C Lacabanne. Thermally stimulated current study of the microstructure of peek. Journal of Thermal Analysis, 1993, 40(2): 697–703
https://doi.org/10.1007/BF02546641
21 X Ling, X Jing, C Zhang, S Chen. Polyether ether ketone (PEEK) properties and its application status. IOP Conference Series. Earth and Environmental Science, 2020, 453(1): 012080
https://doi.org/10.1088/1755-1315/453/1/012080
22 M F Sonnenschein. Micro- and ultrafiltration film membranes from poly(ether ether ketone) (PEEK). Journal of Applied Polymer Science, 1999, 74(5): 1146–1155
https://doi.org/10.1002/(SICI)1097-4628(19991031)74:5<1146::AID-APP11>3.0.CO;2-A
23 J da Silva Burgal, L G Peeva, S Kumbharkar, A Livingston. Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes. Journal of Membrane Science, 2015, 479: 105–116
https://doi.org/10.1016/j.memsci.2014.12.035
24 Y Sun, S Zhou, G Qin, J Guo, Q Zhang, S Li, S Zhang. A chemical-induced crystallization strategy to fabricate poly(ether ether ketone) asymmetric membranes for organic solvent nanofiltration. Journal of Membrane Science, 2021, 620: 118899
https://doi.org/10.1016/j.memsci.2020.118899
25 T Huang, G Chen, Z He, J Xu, P Liu. Pore structure and properties of poly(ether ether ketone) hollow fiber membranes: influence of solvent-induced crystallization during extraction. Polymer International, 2019, 68(11): 1874–1880
https://doi.org/10.1002/pi.5897
26 T ShimodaH Hachiya. Process for preparing a polyether ether ketone membrane. US Patent, 5997741, 1999-12-07
27 K W D Lee, P K Chan, X Feng. Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient. Chemical Engineering Science, 2004, 59(7): 1491–1504
https://doi.org/10.1016/j.ces.2003.12.025
28 H N Beck. Solubility characteristics of poly(ether ether ketone) and poly(phenylene sulfide). Journal of Applied Polymer Science, 1992, 45(8): 1361–1366
https://doi.org/10.1002/app.1992.070450806
29 M F Sonnenschein. Hollow fiber microfiltration membranes from poly(ether ether ketone) (PEEK). Journal of Applied Polymer Science, 1999, 72(2): 175–181
https://doi.org/10.1002/(SICI)1097-4628(19990411)72:2<175::AID-APP3>3.0.CO;2-H
30 R H Mehta, D S Kalika. Characteristics of poly(ether ether ketone) microporous membranes prepared via thermally induced phase separation (TIPS). Journal of Applied Polymer Science, 1997, 66(12): 2347–2355
https://doi.org/10.1002/(SICI)1097-4628(19971219)66:12<2347::AID-APP16>3.0.CO;2-X
31 J E Harris, L M Robeson. Miscible blends of poly(aryl ether ketone)s and polyetherimides. Journal of Applied Polymer Science, 1988, 35(7): 1877–1891
https://doi.org/10.1002/app.1988.070350713
32 S D Hudson, D D Davis, A J Lovinger. Semicrystalline morphology of poly(aryl ether ether ketone)/poly(ether imide) blends. Macromolecules, 1992, 25(6): 1759–1765
https://doi.org/10.1021/ma00032a021
33 G Crevecoeur, G Groeninckx. Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules, 1991, 24(5): 1190–1195
https://doi.org/10.1021/ma00005a034
34 B S Hsiao, B B Sauer. Glass transition, crystallization, and morphology relationships in miscible poly(aryl ether ketones) and poly(ether imide) blends. Journal of Polymer Science. Part B, Polymer Physics, 1993, 31(8): 901–915
https://doi.org/10.1002/polb.1993.090310801
35 J F Bristow, D S Kalika. Investigation of semicrystalline morphology in poly(ether ether ketone)/poly(ether imide) blends by dielectric relaxation spectroscopy. Polymer, 1997, 38(2): 287–295
https://doi.org/10.1016/S0032-3861(96)00517-4
36 S Bicakci, M Cakmak. Development of structural hierachy during uniaxial drawing of PEEK/PEI blends from amorphous precursors. Polymer, 2002, 43(1): 149–157
https://doi.org/10.1016/S0032-3861(01)00607-3
37 S Bicakci, M Cakmak. Kinetics of rapid structural changes during heat setting of preoriented PEEK/PEI blend films as follwed by spectral birefringence technique. Polymer, 2002, 43(9): 2737–2746
https://doi.org/10.1016/S0032-3861(02)00020-4
38 S Bicakci, M Cakmak. Phase behaviour of ternary blends of poly(ethylene naphthalate), poly(ether imide) and poly(ether ether ketone). Polymer, 1998, 39(17): 4001–4010
https://doi.org/10.1016/S0032-3861(97)10227-0
39 M F Sonnenschein. Improved spinnerette design for extrusion of polymeric large internal diameter hollow fiber membranes. Journal of Applied Polymer Science, 2002, 83(10): 2157–2163
https://doi.org/10.1002/app.10170
40 Y Ding, B Bikson. Preparation and characterization of semi-crystalline poly(ether ether ketone) hollow fiber membranes. Journal of Membrane Science, 2010, 357(1–2): 192–198
https://doi.org/10.1016/j.memsci.2010.04.021
41 Y Ding, B Bikson. Macro and meso porous polymeric materials from miscible polysulfone/polyimide blends by chemical decomposition of polyimides. Polymer, 2010, 51(1): 46–52
https://doi.org/10.1016/j.polymer.2009.11.043
42 R H Mehta, D A Madsen, D S Kalika. Microporous membranes based on poly(ether ether ketone) via thermally-induced phase separation. Journal of Membrane Science, 1995, 107(1/2): 93–106
https://doi.org/10.1016/0376-7388(95)00106-M
43 G Chen, Y Chen, T Huang, Z He, J Xu, P Liu. Pore structure and properties of PEEK hollow fiber membranes: influence of the phase structure evolution of PEEK/PEI composite. Polymers, 2019, 11(9): 1398
https://doi.org/10.3390/polym11091398
44 S LoebS Sourirajan. Saline Water Conversion—II. Advances in Chemistry. 1963, 117–132
45 X Li, Y Zhang, S Wang, Y Liu, Y Ding, G He, X Jiang, W Xiao, G Yu. Scalable high-areal-vapacity Li–S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Letters, 2020, 20(9): 6922–6929
https://doi.org/10.1021/acs.nanolett.0c03088
46 Y Liu, X Li, Y Liu, W Kou, W Shen, G He. Promoting opposite diffusion and efficient conversion of polysulfides in “Trap” FexC-doped asymmetric porous membranes as integrated electrodes. Chemical Engineering Journal, 2020, 382: 122858
https://doi.org/10.1016/j.cej.2019.122858
47 W Kou, X Li, Y Liu, X Zhang, S Yang, X Jiang, G He, Y Dai, W Zhen, G Yu. Triple-layered carbon-SiO2 composite membrane for high energy density and long cycling Li−S batteries. ACS Nano, 2019, 13(5): 5900–5909
https://doi.org/10.1021/acsnano.9b01703
48 D M Wang, J Y Lai. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013, 2(2): 229–237
https://doi.org/10.1016/j.coche.2013.04.003
49 Z PeterQ Detlef. Integral asymmetric, solvent-resistant ultrafitration membrane made of partially sulphonated, aromatic polyether ether ketone. DE Patent, 3321860 (A1), 1984-12-20
50 M T Bishop, F E Karasz, P S Russet, K H Langley. Solubility and properties of a poly(aryl ether ketone) in strong acids. Macromolecules, 1985, 18(1): 86–93
https://doi.org/10.1021/ma00143a014
51 J Y KooC C ChauJ R RacchiniR A WesslingM T Bishop. Microporous PEEK membrane and the preparation thereof. US Patent, 4992485, 1991-02-12
52 C Lawrence. Asymmetric semipermeable poly(arylether ketone) membranes and method of producing same. US Patent, 5089192, 1992-02-18
53 J da Silva Burgal, L Peeva, A Livingston. Towards improved membrane production: using low-toxicity solvents for the preparation of PEEK nanofiltration membranes. Green Chemistry, 2016, 18(8): 2374–2384
https://doi.org/10.1039/C5GC02546J
54 J da Silva Burgal, L Peeva, P Marchetti, A Livingston. Controlling molecular weight cut-off of PEEK nanofiltration membranes using a drying method. Journal of Membrane Science, 2015, 493: 524–538
https://doi.org/10.1016/j.memsci.2015.07.012
55 J da Silva Burgal, L Peeva, A Livingston. Negligible ageing in poly(ether-ether-ketone) membranes widens application range for solvent processing. Journal of Membrane Science, 2017, 525: 48–56
https://doi.org/10.1016/j.memsci.2016.10.015
56 T Huang, J Song, S He, T Li, X M Li, T He. Enabling sustainable green close-loop membrane lithium extraction by acid and solvent resistant poly(ether−ether ketone) membrane. Journal of Membrane Science, 2019, 589: 117273
https://doi.org/10.1016/j.memsci.2019.117273
57 T ShimodaH Hachiya. Porous membrane. US Patent, 6017455, 2000-01-25
58 D Li, D Shi, K Feng, X Li, H Zhang. Poly(ether ether ketone) (PEEK) porous membranes with super high thermal stability and high rate capability for lithium-ion batteries. Journal of Membrane Science, 2017, 530: 125–131
https://doi.org/10.1016/j.memsci.2017.02.027
59 X Niu, J Li, G Song, Y Li, T He. Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery. Journal of Materials Science, 2022, 57(13): 7042–7055
https://doi.org/10.1007/s10853-022-07111-0
60 N Cao, Y Sun, J Wang, H Zhang, J Pang, Z Jiang. Strong acid- and solvent-resistant polyether ether ketone separation membranes with adjustable pores. Chemical Engineering Journal, 2020, 386: 124086
https://doi.org/10.1016/j.cej.2020.124086
61 S Feng, J Pang, X Yu, G Wang, A Manthiram. High-performance semicrystalline poly(ether ketone)-based proton exchange membrane. ACS Applied Materials & Interfaces, 2017, 9(29): 24527–24537
https://doi.org/10.1021/acsami.7b03720
62 D R Kelsey, L M Robeson, R A Clendinning, C S Blackwell. Defect-free, crystalline aromatic poly(etherketones): a synthetic strategy based on acetal monomers. Macromolecules, 1987, 20(6): 1204–1212
https://doi.org/10.1021/ma00172a007
63 B Karimi, H Seradj, J Maleki. Highly efficient and chemoselective interchange of 1,3-oxathioacetals and dithioacetals to acetals promoted by N-halosuccinimide. ChemInform, 2002, 58(22): 4513–4516
64 I Manolakis, P Cross, H M Colquhoun. Exchange reactions of poly(arylene ether ketone) dithioketals with aliphatic diols: formation and deprotection of poly(arylene ether ketal)s. Macromolecules, 2017, 50(24): 9561–9568
https://doi.org/10.1021/acs.macromol.7b02203
65 H M Colquhoun, F P Paoloni, M G Drew, P Hodge. Dithioacetalisation of PEEK: a general technique for the solubilisation and characterisation of semi-crystalline aromatic polyketones. Chemical Communications, 2007, (32): 3365–3367
https://doi.org/10.1039/b708116b
66 S L Aristizábal, S Chisca, B A Pulido, S P Nunes. Preparation of PEEK membranes with excellent stability using common organic solvents. Industrial & Engineering Chemistry Research, 2019, 59(12): 5218–5226
https://doi.org/10.1021/acs.iecr.9b04281
67 R P Lively, D S Sholl. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279
https://doi.org/10.1038/nmat4860
68 P Marchetti, M F J Solomon, G Szekely, A G Livingston. Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 2014, 114(21): 10735–10806
https://doi.org/10.1021/cr500006j
69 W J Koros, C Zhang. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
https://doi.org/10.1038/nmat4805
70 Y Xu, J Lin, C Gao, V Bart, Q Shen, H Shao, J Shen. Preparation of high-flux nanoporous solvent resistant PAN membrane with potential fractionation of dyes and Na2SO4. Industrial & Engineering Chemistry Research, 2017, 56: 11967–11976
https://doi.org/10.1021/acs.iecr.7b03409
71 J Lee, H Yang, T H Bae. Polybenzimidazole membrane crosslinked with epoxy-containing inorganic networks for organic solvent nanofiltration and aqueous nanofiltration under extreme basic conditions. Membranes, 2022, 12(2): 140
https://doi.org/10.3390/membranes12020140
72 Y Zheng, A Gao, J Bai, Q Liao, Y Wu, W Zhang, M Guan, L Tong, D Geng, X Zhao, P K Chu, H Wang. A programmed surface on polyetheretherketone for sequentially dictating osteoimmunomodulation and bone regeneration to achieve ameliorative osseointegration under osteoporotic conditions. Bioactive Materials, 2022, 14: 364–376
https://doi.org/10.1016/j.bioactmat.2022.01.042
73 X Yan, L Gao, W Zheng, X Ruan, C Zhang, X Wu, G He. Long-spacer-chain imidazolium functionalized poly(ether ether ketone) as hydroxide exchange membrane for fuel cell. International Journal of Hydrogen Energy, 2016, 41(33): 14982–14990
https://doi.org/10.1016/j.ijhydene.2016.06.030
74 X Wu, W Chen, X Yan, G He, J Wang, Y Zhang, X Zhu. Enhancement of hydroxide conductivity by the di-quaternization strategy for poly(ether ether ketone) based anion exchange membranes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(31): 12222–12231
https://doi.org/10.1039/C4TA01397B
75 P A DamrowR D MahoneyH N BeckM F Sonnenschein. Process for making a microporous from a blend containing a poly(ether ether ketone)-type polymer, an amorphous polymer, and a solvent. US Patent, 5205968, 1993-04-27
76 H ZhangT ChenY Yuan. Synthesis of novel polyether ether ketone with phenolphthalein side group. CN Patent, 85108751, 1987-06-03
77 J C Jansen, E Drioli. Poly(ether ether ketone) derivative membranes—a review of their preparation, properties and potential. Polymer Science Series A, 2009, 51(11–12): 1355–1366
https://doi.org/10.1134/S0965545X09110200
78 M G Buonomenna, A Figoli, J C Jansen, E Drioli. Preparation of asymmetric PEEKWC flat membranes with different microstructures by wet phase inversion. Journal of Applied Polymer Science, 2004, 92(1): 576–591
https://doi.org/10.1002/app.20042
79 F Tasselli, J C Jansen, E Drioli. PEEKWC ultrafiltration hollow-fiber membranes: preparation, morphology, and transport properties. Journal of Applied Polymer Science, 2004, 91(2): 841–853
https://doi.org/10.1002/app.13207
80 F Tasselli, J Jansen, F Sidari, E Drioli. Morphology and transport property control of modified poly(ether ether ketone) (PEEKWC) hollow fiber membranes prepared from PEEKWC/PVP blends: influence of the relative humidity in the air gap. Journal of Membrane Science, 2005, 255(1–2): 13–22
https://doi.org/10.1016/j.memsci.2005.01.014
81 F Tasselli, A Cassano, E Drioli. Ultrafiltration of kiwifruit juice using modified poly(ether ether ketone) hollow fibre membranes. Separation and Purification Technology, 2007, 57(1): 94–102
https://doi.org/10.1016/j.seppur.2007.03.007
82 C Conidi, F Tasselli, A Cassano, E Drioli. Quality of kiwifruit juice clarified by modified poly(ether ether ketone) hollow fiber membranes. Journal of Membrane Science & Research, 2017, 3: 313–319
83 M F Jimenez Solomon, P Gorgojo, M Munoz Ibanez, A G Livingston. Beneath the surface: influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration. Journal of Membrane Science, 2013, 448: 102–113
https://doi.org/10.1016/j.memsci.2013.06.030
84 D Zhang, K Zhang, K Chen, Y Xue, J Liang, Y Cai. Mitigation of organic fouling of ultrafiltration membrane by high-temperature crayfish shell biochar: performance and mechanisms. Science of the Total Environment, 2022, 820: 153183
https://doi.org/10.1016/j.scitotenv.2022.153183
85 Y Qi, H Shao, D Luo, L Xiang, J Luo, Q Tian, S Qin. Antifouling poly(vinylidene fluoride) hollow fiber membrane with hydrophilic surfaces by ultrasonic wave-assisted graft polymerization. Polymer Engineering and Science, 2019, 59(S1): E446–E454
https://doi.org/10.1002/pen.25012
86 C Jiang, T Huang, Y Chen, Z Su, X Yan, Q Xu, M Jiang, P Liu. The effect of grafting monomer charge on the antifouling performance of poly(ether ether ketone) hollow fiber membrane by ultraviolet irradiation polymerization. Polymer International, 2020, 70(8): 1057–1064
https://doi.org/10.1002/pi.6159
87 B Yameen, M Alvarez, O Azzaroni, U Jonas, W Knoll. Tailoring of poly(ether ether ketone) surface properties via surface-initiated atom transfer radical polymerization. Langmuir, 2009, 25(11): 6214–6220
https://doi.org/10.1021/la900010z
88 A Yousaf, A Farrukh, Z Oluz, E Tuncel, H Duran, S Y Doğan, T Tekinay, H Rehman, B Yameen. UV-light assisted single step route to functional PEEK surfaces. Reactive & Functional Polymers, 2014, 83: 70–75
https://doi.org/10.1016/j.reactfunctpolym.2014.07.011
89 T Huang, J Li, Y Chen, T Zhong, P Liu. Improving permeability and antifouling performance of poly(ether ether ketone) membranes by photo-induced graft polymerization. Materials Today. Communications, 2020, 23: 100945
https://doi.org/10.1016/j.mtcomm.2020.100945
90 C Wang, M J Park, D H Seo, E Drioli, H Matsuyama, H Shon. Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Separation and Purification Technology, 2021, 268: 118657
https://doi.org/10.1016/j.seppur.2021.118657
91 Y Zhang, D Kim, R Dong, X Feng, C O Osuji. Tunable organic solvent nanofiltration in self-assembled membranes at the sub-1 nm scale. Science Advances, 2022, 8(11): eabm5899
https://doi.org/10.1126/sciadv.abm5899
92 J K Schnoor, J Bettmer, J Kamp, M Wessling, M A Liauw. Recycling and separation of homogeneous catalyst from aqueous multicomponent mixture by organic solvent nanofiltration. Membranes (Basel), 2021, 11(6): 423
https://doi.org/10.3390/membranes11060423
93 M G Buonomenna, J Bae. Organic solvent nanofiltration in pharmaceutical industry. Separation and Purification Reviews, 2014, 44(2): 157–182
https://doi.org/10.1080/15422119.2014.918884
94 G Falca, V E Musteata, S Chisca, M N Hedhili, C Ong, S P Nunes. Naturally extracted hydrophobic solvent and self-assembly in interfacial polymerization. ACS Applied Materials & Interfaces, 2021, 13(37): 44824–44832
https://doi.org/10.1021/acsami.1c07584
95 A Alammar, R Hardian, G Szekely. Upcycling agricultural waste into membranes: from date seed biomass to oil and solvent-resistant nanofiltration. Green Chemistry, 2022, 24(1): 365–374
https://doi.org/10.1039/D1GC03410C
96 D Ren, S Ren, Y Lin, J Xu, X Wang. Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271: 129425
https://doi.org/10.1016/j.chemosphere.2020.129425
97 H Abadikhah, E N Kalali, S Behzadi, S A Khan, X Xu, M E Shabestari, S Agathopoulos. High flux thin film nanocomposite membrane incorporated with functionalized TiO2@reduced graphene oxide nanohybrids for organic solvent nanofiltration. Chemical Engineering Science, 2019, 204: 99–109
https://doi.org/10.1016/j.ces.2019.04.022
98 R R Gonzales, N Kato, H Awaji, H Matsuyama. Development of polydimethylsiloxane composite membrane for organic solvent separation. Separation and Purification Technology, 2022, 285: 120369
https://doi.org/10.1016/j.seppur.2021.120369
99 K Y Wang, M Weber, T S Chung. Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review. Journal of Materials Chemistry A, 2022, 10(16): 8687–8718
https://doi.org/10.1039/D2TA00422D
100 L Peeva, J Arbour, A Livingston. On the potential of organic solvent nanofiltration in continuous Heck coupling reactions. Organic Process Research & Development, 2013, 17(7): 967–975
https://doi.org/10.1021/op400073p
101 M G Buonomenna, G Golemme, J C Jansen, S H Choi. Asymmetric PEEKWC membranes for treatment of organic solvent solutions. Journal of Membrane Science, 2011, 368(1–2): 144–149
https://doi.org/10.1016/j.memsci.2010.11.036
102 K Hendrix, M Vaneynde, G Koeckelberghs, I F J Vankelecom. Synthesis of modified poly(ether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion. Journal of Membrane Science, 2013, 447: 96–106
https://doi.org/10.1016/j.memsci.2013.07.006
103 K Hendrix, G Koeckelberghs, I F J Vankelecom. Study of phase inversion parameters for PEEK-based nanofiltration membranes. Journal of Membrane Science, 2014, 452: 241–252
https://doi.org/10.1016/j.memsci.2013.10.048
104 K Hendrix, M Van Eynde, G Koeckelberghs, I F J Vankelecom. Crosslinking of modified poly(ether ether ketone) membranes for use in solvent resistant nanofiltration. Journal of Membrane Science, 2013, 447: 212–221
https://doi.org/10.1016/j.memsci.2013.07.002
105 K Hendrix, S Vandoorne, G Koeckelberghs, I F J Vankelecom. SRNF membranes for edible oil purification: introducing free amines in crosslinked PEEK to increase membrane hydrophilicity. Polymer, 2014, 55(6): 1307–1316
https://doi.org/10.1016/j.polymer.2013.11.039
106 M G Buonomenna, A Gordano, E Drioli. Characteristics and performance of new nanoporous PEEKWC films. European Polymer Journal, 2008, 44(7): 2051–2059
https://doi.org/10.1016/j.eurpolymj.2008.02.009
107 L Peeva, J da Silva Burgal, S Vartak, A G Livingston. Experimental strategies for increasing the catalyst turnover number in a continuous Heck coupling reaction. Journal of Catalysis, 2013, 306: 190–201
https://doi.org/10.1016/j.jcat.2013.06.020
108 G Bagnato, A Figoli, R Garbe, F Russo, F Galiano, A Sanna. Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions. Fuel Processing Technology, 2021, 216: 106766
https://doi.org/10.1016/j.fuproc.2021.106766
109 Y Yu, J Wang, Y Wang, W Pan, C Liu, P Liu, L Liang, C Xu, Y Liu. Polyethyleneimine-functionalized phenolphthalein-based cardo poly(ether ether ketone) membrane for CO2 separation. Journal of Industrial and Engineering Chemistry, 2020, 83: 20–28
https://doi.org/10.1016/j.jiec.2019.10.007
110 M G Buonomenna, A Gordano, G Golemme, E Drioli. Preparation, characterization and use of PEEKWC nanofiltration membranes for removal of Azur B dye from aqueous media. Reactive & Functional Polymers, 2009, 69(4): 259–263
https://doi.org/10.1016/j.reactfunctpolym.2009.01.004
111 J Wang, Q Du, J Luan, X Zhu, J Pang. ZnO nanoneedle-modified PEEK fiber felt for improving anti-fouling performance of oil/water separation. Langmuir, 2021, 37(24): 7449–7456
https://doi.org/10.1021/acs.langmuir.1c00838
112 Q Xu, G Wang, C Xiang, X Cong, X Gai, S Zhang, M Zhang, H Zhang, J Luan. Preparation of a novel poly(ether ether ketone) nonwoven filter and its application in harsh conditions for dust removal. Separation and Purification Technology, 2020, 253: 117555
https://doi.org/10.1016/j.seppur.2020.117555
113 C D Ho, H Chang, G H Lin, T L Chew. Enhancing absorption performance of CO2 by amine solution through the spiral wired vhannel in concentric circular membrane contactors. Membranes (Basel), 2022, 12(1): 4
https://doi.org/10.3390/membranes12010004
114 X Li, Y Zhang, Q Xin, X Ding, L Zhao, H Ye, L Lin, H Li, Y Zhang. NH2-MIL-125 filled mixed matrix membrane contactor with SO2 enrichment for flue gas desulphurization. Chemical Engineering Journal, 2022, 428: 132595
https://doi.org/10.1016/j.cej.2021.132595
115 R Klaassen, P Feron, A Jansen. Membrane contactor applications. Desalination, 2008, 224(1): 81–87
https://doi.org/10.1016/j.desal.2007.02.083
116 X Jiang, Y Shao, J Li, M Wu, Y Niu, X Ruan, X Yan, X Li, G He. Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation. ACS Nano, 2020, 14(12): 17376–17386
https://doi.org/10.1021/acsnano.0c07543
117 X Jiang, D Lu, W Xiao, X Ruan, J Fang, G He. Membrane assisted cooling crystallization: process model, nucleation, metastable zone, and crystal size distribution. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(3): 829–841
https://doi.org/10.1002/aic.15069
118 L Xing, J Song, Z Li, J Liu, T Huang, P Dou, Y Chen, X M Li, T He. Solvent stable nanoporous poly(ethylene-co-vinyl alcohol) barrier membranes for liquid–liquid extraction of lithium from a salt lake brine. Journal of Membrane Science, 2016, 520: 596–606
https://doi.org/10.1016/j.memsci.2016.08.027
119 S Hafeez, T Safdar, E Pallari, G Manos, E Aristodemou, Z Zhang, S M Al-Salem, A Constantinou. CO2 capture using membrane contactors: a systematic literature review. Frontiers of Chemical Science and Engineering, 2020, 15(4): 720–754
https://doi.org/10.1007/s11705-020-1992-z
120 X Jiang, M Han, Z Xia, J Li, X Ruan, X Yan, W Xiao, G He. Interfacial microdroplet evaporative crystallization on 3D printed regular matrix platform. AIChE Journal, 2020, 66(8): e16280
https://doi.org/10.1002/aic.16280
121 X Jiang, Y Shao, L Sheng, P Li, G He. Membrane crystallization for process intensification and control: a review. Engineering, 2021, 7(1): 50–62
https://doi.org/10.1016/j.eng.2020.06.024
122 N van Linden, H Spanjers, J B van Lier. Fuelling a solid oxide fuel cell with ammonia recovered from water by vacuum membrane stripping. Chemical Engineering Journal, 2022, 428: 131081
https://doi.org/10.1016/j.cej.2021.131081
123 J Song, T Huang, H Qiu, X Niu, X M Li, Y Xie, T He. A critical review on membrane extraction with improved stability: potential application for recycling metals from city mine. Desalination, 2018, 440: 18–38
https://doi.org/10.1016/j.desal.2018.01.007
124 S Bey, A Criscuoli, S Simone, A Figoli, M Benamor, E Drioli. Hydrophilic PEEK-WC hollow fibre membrane contactors for chromium(Vi) removal. Desalination, 2011, 283: 16–24
https://doi.org/10.1016/j.desal.2011.04.038
125 A Dugan, J Mayer, A Thaller, G Bachner, K W Steininger. Developing policy packages for low-carbon passenger transport: a mixed methods analysis of trade-offs and synergies. Ecological Economics, 2022, 193: 107304
https://doi.org/10.1016/j.ecolecon.2021.107304
126 F Dong, Y Li, Y Gao, J Zhu, C Qin, X Zhang. Energy transition and carbon neutrality: exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resources, Conservation and Recycling, 2022, 177: 106002
https://doi.org/10.1016/j.resconrec.2021.106002
127 A Nogalska, A Trojanowska, R Garcia-Valls. Membrane contactors for CO2 capture processes-critical review. Physical Sciences Reviews, 2017, 2(7): 59
https://doi.org/10.1515/psr-2017-0059
128 N Ghasem, M Al-Marzouqi, A Duidar. Effect of PVDF concentration on the morphology and performance of hollow fiber membrane employed as gas-liquid membrane contactor for CO2 absorption. Separation and Purification Technology, 2012, 98: 174–185
https://doi.org/10.1016/j.seppur.2012.06.036
129 P Patel, T R Hull, R W McCabe, D Flath, J Grasmeder, M Percy. Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies. Polymer Degradation & Stability, 2010, 95(5): 709–718
https://doi.org/10.1016/j.polymdegradstab.2010.01.024
130 S Li, T J Pyrzynski, N B Klinghoffer, T Tamale, Y Zhong, J L Aderhold, S James Zhou, H S Meyer, Y Ding, B Bikson. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527: 92–101
https://doi.org/10.1016/j.memsci.2017.01.014
[1] Han Jia, Jiajun Dai, Tingyi Wang, Yingbiao Xu, Lingyu Zhang, Jianan Wang, Lin Song, Kaihe Lv, Dexin Liu, Pan Huang. The construction of pseudo-Janus silica/surfactant assembly and their application to stabilize Pickering emulsions and enhance oil recovery[J]. Front. Chem. Sci. Eng., 2022, 16(7): 1101-1113.
[2] Feng Zhang, Lu Tan, Li Gong, Shuqi Liu, Wangxi Fang, Zhenggong Wang, Shoujian Gao, Jian Jin. Ionic strength directed self-assembled polyelectrolyte single-bilayer membrane for low-pressure nanofiltration[J]. Front. Chem. Sci. Eng., 2022, 16(5): 699-708.
[3] Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang. Nanofiltration for drinking water treatment: a review[J]. Front. Chem. Sci. Eng., 2022, 16(5): 681-698.
[4] Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou. CO2 capture using membrane contactors: a systematic literature review[J]. Front. Chem. Sci. Eng., 2021, 15(4): 720-754.
[5] Xianhui Li, Sheng Tan, Jianquan Luo, Manuel Pinelo. Nanofiltration for separation and purification of saccharides from biomass[J]. Front. Chem. Sci. Eng., 2021, 15(4): 837-853.
[6] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[7] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[8] Meibo He, Zhuang Liu, Tong Li, Chen Chen, Baicang Liu, John C. Crittenden. Effect of adding a smart potassium ion-responsive copolymer into polysulfone support membrane on the performance of thin-film composite nanofiltration membrane[J]. Front. Chem. Sci. Eng., 2019, 13(2): 400-414.
[9] Parimal Pal, Ramesh Kumar, Subhamay Banerjee. Purification and concentration of gluconic acid from an integrated fermentation and membrane process using response surface optimized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(1): 152-163.
[10] Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
[11] Li XU, Wei LI, Yan YOU, Shaoxing ZHANG, Yingchun ZHAO. Polysulfone and zirconia composite separators for alkaline water electrolysis[J]. Front Chem Sci Eng, 2013, 7(2): 154-161.
[12] Li XU, Li-Shun DU, Jing HE. Effects of operating conditions on membrane charge property and nanofiltration[J]. Front Chem Sci Eng, 2011, 5(4): 492-499.
[13] Zhihong YANG, Guoliang ZHANG, Lan LIN, Danping REN, Qin MENG, Hongzi ZHANG. Effects of baffles on separation of aqueous ethanol solution with hollow fibers[J]. Front Chem Eng Chin, 2009, 3(1): 68-72.
[14] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[15] SHANG Weijuan, WANG Daxin, WANG Xiaolin. Modeling of the separation performance of nanofiltration membranes and its role in the applications of nanofiltration technology in product separation processes[J]. Front. Chem. Sci. Eng., 2007, 1(2): 208-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed