| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					ZnFe2O4/BiVO4 Z-scheme heterojunction for efficient visible-light photocatalytic degradation of ciprofloxacin  | 
  					 
  					  										
						Beibei Wang1, Kejiang Qian2, Weiping Yang1, Wenjing An1, Lan-Lan Lou2( ), Shuangxi Liu2, Kai Yu1( ) | 
					 
															
						1. MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 2. Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute of Advanced Materials, Nankai University, Tianjin 300350, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  A novel Z-scheme ZnFe2O4/BiVO4 heterojunction photocatalyst was successfully synthesized using a convenient solvothermal method and applied in the visible light photocatalytic degradation of ciprofloxacin, which is a typical antibiotic contaminant in wastewater. The heterostructure of as-synthesized catalysts was confirmed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy characterizations. Compared with the single-phase counterparts, ZnFe2O4/BiVO4 demonstrated considerably enhanced photogenerated charge separation efficiencies because of the Z-scheme transfer mechanism of electrons between the composite photocatalysts. Consequently, the 30% ZnFe2O4/BiVO4 catalyst afforded a degradation rate of up to 97% of 20 mg/L ciprofloxacin under 30 min of visible light irradiation with a total organic carbon removal rate of 50%, which is an excellent activity compared with ever reported BiVO4-based catalysts. In addition, the liquid chromatography-mass spectrometry and quantitative structure-activity relationships model analyses demonstrated that the toxicity of the intermediates was lower than that of the parent ciprofloxacin. Moreover, the as-synthesized ZnFe2O4/BiVO4 heterojunctions were quite stable and could be reused at least four times. This study thus provides a promising Z-scheme heterojunction photocatalyst for the efficient removal and detoxication of antibiotic pollutants from wastewater. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				ZnFe2O4/BiVO4  
																		  																																				Z-scheme heterojunction  
																		  																																				photocatalytic degradation  
																		  																																				ciprofloxacin  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Lan-Lan Lou,Kai Yu   
																													     		
													     	 | 
														 
																																										
															| About author:  Peng Lei and Charity Ngina Mwangi contributed equally to this work.  | 
														 
																												
															| 
																															Just Accepted Date: 15 May 2023  
																																														Online First Date: 28 June 2023   
																																														Issue Date: 25 October 2023
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      Y Hu, L Jin, Y Zhao, L Jiang, S Yao, W Zhou, K Lin, C Cui. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. Science of the Total Environment, 2021, 791: 148152 
														     														     	 
														     															     		https://doi.org/10.1016/j.scitotenv.2021.148152
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      H Huang, S Zeng, X Dong, D Li, Y Zhang, M He, P Du. Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system. Journal of Environmental Management, 2019, 231: 494–503 
														     														     	 
														     															     		https://doi.org/10.1016/j.jenvman.2018.10.051
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      E Batard, F Ollivier, D Boutoille, J B Hardouin, E Montassier, J Caillon, F Ballereau. Relationship between hospital antibiotic use and quinolone resistance in Escherichia coli. International Journal of Infectious Diseases, 2013, 17(4): 254–258 
														     														     	 
														     															     		https://doi.org/10.1016/j.ijid.2012.10.005
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      J Wang, S Wang. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. Journal of Environmental Management, 2016, 182: 620–640 
														     														     	 
														     															     		https://doi.org/10.1016/j.jenvman.2016.07.049
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      H Quan, K Qian, Y Xuan, L L Lou, K Yu, S Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS. Frontiers of Chemical Science and Engineering, 2021, 15(6): 1561–1571 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-021-2089-z
														     															     															     															 | 
																  
																														
															| 6 | 
															 
														      W Wang, L Song, H Zhang, G Zhang, J Cao. Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI). Frontiers of Chemical Science and Engineering, 2021, 15(6): 1537–1549 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-021-2094-2
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														     M WangZ ZhangZ ChiL L LouH LiH YuT MaK YuH Wang. Alkali metal cations as charge-transfer bridge for polarization promoted solar-to-H2 conversion. Advanced Functional Materials, 2022, 2211565
														     															 | 
																  
																														
															| 8 | 
															 
														      R Li, F Zhang, D Wang, J Yang, M Li, J Zhu, X Zhou, H Han, C Li. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4(1): 1432 
														     														     	 
														     															     		https://doi.org/10.1038/ncomms2401
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      Y Zhao, R Li, L Mu, C Li. Significance of crystal morphology controlling in semiconductor-based photocatalysis: a case study on BiVO4 photocatalyst. Crystal Growth & Design, 2017, 17(6): 2923–2928 
														     														     	 
														     															     		https://doi.org/10.1021/acs.cgd.7b00291
														     															     															     															 | 
																  
																														
															| 10 | 
															 
														      C A Unsworth, B Coulson, V Chechik, R E Douthwaite. Aerobic oxidation of benzyl alcohols to benzaldehydes using monoclinic bismuth vanadate nanoparticles under visible light irradiation: photocatalysis selectivity and inhibition. Journal of Catalysis, 2017, 354: 152–159 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2017.08.023
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      Q Han, L Li, W Gao, Y Shen, L Wang, Y Zhang, X Wang, Q Shen, Y Xiong, Y Zhou, Z Zou. Elegant construction of ZnIn2S4/BiVO4 hierarchical heterostructures as direct Z-scheme photocatalysts for efficient CO2 photoreduction. ACS Applied Materials & Interfaces, 2021, 13(13): 15092–15100 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.0c21266
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      X Cao, Y Gu, H Tian, Y Fang, D Johnson, Z Ren, C Chen, Y Huang. Microemulsion synthesis of ms/tz-BiVO4 composites: the effect of pH on crystal structure and photocatalytic performance. Ceramics International, 2020, 46(13): 20788–20797 
														     														     	 
														     															     		https://doi.org/10.1016/j.ceramint.2020.05.048
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      D Zhang, J Hao, P Wan, D Zhang, Q Sun, Z Liu, F Li, H Fang, Y Wang. Synergy of charge pre-separation and direct Z-scheme bridge in BiVO4{040}/Ag6Si2O7 photocatalyst boosting organic pollutant degradation. Applied Surface Science, 2020, 513: 145832 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2020.145832
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      M Sun, X Wang, H Pan, Z Pang, Y Zhang. Defect engineering modified bismuth vanadate toward efficient solar hydrogen peroxide production. Journal of Colloid and Interface Science, 2023, 629: 215–224 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2022.08.142
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      K Yu, L L Lou, S Liu, W Zhou. Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts. Advanced Science, 2020, 7(2): 1901970 
														     														     	 
														     															     		https://doi.org/10.1002/advs.201901970
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      R Su, M He, N Li, D Ma, W Zhou, B Gao, Q Yue, Q Li. Visible-light photocatalytic chlorite activation mediated by oxygen vacancy abundant Nd-doped BiVO4 for efficient chlorine dioxide generation and pollutant degradation. ACS Applied Materials & Interfaces, 2022, 14(28): 31920–31932 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.2c06011
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      W Zhang, Y Zhang, H Yuan, J Li, L Ding, S Chu, L Wang, W Zhai, R Zhu, H Cao, Z Jiao. Built-in electron transport channels and interfacial ions doping in BiVO4 modified with isolated Ni atoms anchored on carbon hollow matrix for boosting charge separation and transport efficiency. Chemical Engineering Journal, 2022, 437: 135272 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2022.135272
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      H J Kong, K H Kim, S Kim, H Lee, J K Kang. Unveiling the role of tetragonal BiVO4 as a mediator for dual phase BiVO4/g-C3N4 composite photocatalysts enabling highly efficient water oxidation via Z-scheme charge transfer. Journal of Materials Chemistry A, 2019, 7(46): 26279–26284 
														     														     	 
														     															     		https://doi.org/10.1039/C9TA10704E
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      B Han, S Liu, Y J Xu, Z R Tang. 1D CdS nanowire-2D BiVO4 nanosheet heterostructures toward photocatalytic selective fine-chemical synthesis. RSC Advances, 2015, 5(21): 16476–16483 
														     														     	 
														     															     		https://doi.org/10.1039/C4RA16397D
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      R Wang, P Zhu, M Liu, J Xu, M Duan, D Luo. Synthesis and characterization of magnetic ZnFe2O4/Bi0-Bi2MoO6 with Z-scheme heterojunction for antibiotics degradation under visible light. Separation and Purification Technology, 2021, 277: 119339 
														     														     	 
														     															     		https://doi.org/10.1016/j.seppur.2021.119339
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      K Song, C Zhang, Y Zhang, G Yu, M Zhang, Y Zhang, L Qiao, M Liu, N Yin, Y Zhao, Y Tao. Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433: 114122 
														     														     	 
														     															     		https://doi.org/10.1016/j.jphotochem.2022.114122
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      H B Truong, B T Huy, S K Ray, G Gyawali, Y I Lee, J Cho, J Hur. Magnetic visible-light activated photocatalyst ZnFe2O4/BiVO4/g-C3N4 for decomposition of antibiotic lomefloxacin: photocatalytic mechanism, degradation pathway, and toxicity assessment. Chemosphere, 2022, 299: 134320 
														     														     	 
														     															     		https://doi.org/10.1016/j.chemosphere.2022.134320
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      S Majumder, N D Quang, T T Hien, N D Chinh, N M Hung, H Yang, C Kim, D Kim. Effect of SILAR-anchored ZnFe2O4 on the BiVO4 nanostructure: an attempt towards enhancing photoelectrochemical water splitting. Applied Surface Science, 2021, 546: 149033 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2021.149033
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      J Li, Y Huang, M Su, Y Xie, D Chen. Dual light-driven p-ZnFe2O4/n-TiO2 catalyst: benzene-breaking reaction for malachite green. Environmental Research, 2022, 207: 112081 
														     														     	 
														     															     		https://doi.org/10.1016/j.envres.2021.112081
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      A Behera, D Kandi, S Mansingh, S Martha, K Parida. Facile synthesis of ZnFe2O4@RGO nanocomposites towards photocatalytic ciprofloxacin degradation and H2 energy production. Journal of Colloid and Interface Science, 2019, 556: 667–679 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2019.08.109
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      K K Das, S Patnaik, S Mansingh, A Behera, A Mohanty, C Acharya, K M Parida. Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. Journal of Colloid and Interface Science, 2020, 561: 551–567 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2019.11.030
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      Q Ni, H Cheng, J Ma, Y Kong, S Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system. Frontiers of Chemical Science and Engineering, 2020, 14(6): 956–966 
														     														     	 
														     															     		https://doi.org/10.1007/s11705-019-1907-z
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      X Wang, J Zhou, S Zhao, X Chen, Y Yu. Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. Applied Surface Science, 2018, 453: 394–404 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2018.05.073
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      L Li, C G Niu, H Guo, J Wang, M Ruan, L Zhang, C Liang, H Y Liu, Y Y Yang. Efficient degradation of levofloxacin with magnetically separable ZnFe2O4/NCDs/Ag2CO3 Z-scheme heterojunction photocatalyst: vis-NIR light response ability and mechanism insight. Chemical Engineering Journal, 2020, 383: 123192 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2019.123192
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      Y Deng, L Tang, C Feng, G Zeng, J Wang, Y Zhou, Y Liu, B Peng, H Feng. Construction of plasmonic Ag modified phosphorous-doped ultrathin g-C3N4 nanosheets/BiVO4 photocatalyst with enhanced visible-near-infrared response ability for ciprofloxacin degradation. Journal of Hazardous Materials, 2018, 344: 758–769 
														     														     	 
														     															     		https://doi.org/10.1016/j.jhazmat.2017.11.027
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      Z Chen, N Mi, L Huang, W Wang, C Li, Y Teng, C Gu. Snow-like BiVO4 with rich oxygen defects for efficient visible light photocatalytic degradation of ciprofloxacin. Science of the Total Environment, 2022, 808: 152083 
														     														     	 
														     															     		https://doi.org/10.1016/j.scitotenv.2021.152083
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      C Lai, M Zhang, B Li, D Huang, G Zeng, L Qin, X Liu, H Yi, M Cheng, L Li, Z Chen, L Chen. Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight. Chemical Engineering Journal, 2019, 358: 891–902 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2018.10.072
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      G Zhao, J Ding, F Zhou, Q Zhao, K Wang, X Chen, Q Gao. Insight into a novel microwave-assisted W doped BiVO4 self-assembled sphere with rich oxygen vacancies oriented on rGO (W-BiVO4-x/rGO) photocatalyst for efficient contaminants removal. Separation and Purification Technology, 2021, 277: 119610 
														     														     	 
														     															     		https://doi.org/10.1016/j.seppur.2021.119610
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      M Chen, Y Dai, J Guo, H Yang, D Liu, Y Zhai. Solvothermal synthesis of biochar@ZnFe2O4/BiOBr Z-scheme heterojunction for efficient photocatalytic ciprofloxacin degradation under visible light. Applied Surface Science, 2019, 493: 1361–1367 
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2019.04.160
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      Q Su, J Li, B Wang, Y Li, L Hou. Direct Z-scheme Bi2MoO6/UiO-66-NH2 heterojunctions for enhanced photocatalytic degradation of ofloxacin and ciprofloxacin under visible light. Applied Catalysis B: Environmental, 2022, 318: 121820 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2022.121820
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      Y Zhou, W Jiao, Y Xie, F He, Y Ling, Q Yang, J Zhao, H Ye, Y Hou. Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. Journal of Colloid and Interface Science, 2022, 608: 2213–2223 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2021.10.053
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      H Guo, H Y Niu, C Liang, C G Niu, D W Huang, L Zhang, N Tang, Y Yang, C Y Feng, G M Zeng. Insight into the energy band alignment of magnetically separable Ag2O/ZnFe2O4 p-n heterostructure with rapid charge transfer assisted visible light photocatalysis. Journal of Catalysis, 2019, 370: 289–303 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcat.2019.01.009
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      H Huang, Y He, X Du, P K Chu, Y Zhang. A general and facile approach to heterostructured Core/Shell BiVO4/BiOI p–n junction: room-temperature in situ assembly and highly boosted visible-light photocatalysis. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3262–3273 
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.5b01038
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      F Chen, Q Yang, J Sun, F Yao, S Wang, Y Wang, X Wang, X Li, C Niu, D Wang, G Zeng. Enhanced photocatalytic degradation of tetracycline by AgI/BiVO4 heterojunction under visible-light irradiation: mineralization efficiency and mechanism. ACS Applied Materials & Interfaces, 2016, 8(48): 32887–32900 
														     														     	 
														     															     		https://doi.org/10.1021/acsami.6b12278
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      X Zhang, J Duan, Y Tan, Y Deng, C Li, Z Sun. Insight into peroxymonosulfate assisted photocatalysis over Fe2O3 modified TiO2/diatomite composite for highly efficient removal of ciprofloxacin. Separation and Purification Technology, 2022, 293: 121123 
														     														     	 
														     															     		https://doi.org/10.1016/j.seppur.2022.121123
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														     H PiaoJ ZhaoS ZhangQ QuanJ HuQ HuangR ZhuL FanC Xiao. Polypyrrole/cadmium sulfide/nickel hollow fiber as an enhanced and recyclable intrinsic photocatalyst for pollutant removal and high-effective hydrogen evolution. International Journal of Hydrogen Energy, 2022, in press
														     															 | 
																  
																														
															| 42 | 
															 
														      C Cui, X Zhao, X Su, N Xi, X Wang, X Yu, X L Zhang, H Liu, Y Sang. Porphyrin-based donor−acceptor covalent organic polymer/ZnIn2S4 Z-scheme heterostructure for efficient photocatalytic hydrogen evolution. Advanced Functional Materials, 2022, 32(47): 2208962 
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202208962
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      X Hu, X Hu, Q Peng, L Zhou, X Tan, L Jiang, C Tang, H Wang, S Liu, Y Wang, Z Ning. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2. Chemical Engineering Journal, 2020, 380: 122366 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2019.122366
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      J Deng, Y Ge, C Tan, H Wang, Q Li, S Zhou, K Zhang. Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation. Chemical Engineering Journal, 2017, 330: 1390–1400 
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2017.07.137
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      X Zhang, M Kamali, Y Xue, S Li, M E V Costa, D Cabooter, R Dewil. Periodate activation with copper oxide nanomaterials for the degradation of ciprofloxacin—a new insight into the efficiency and mechanisms. Journal of Cleaner Production, 2023, 383: 135412 
														     														     	 
														     															     		https://doi.org/10.1016/j.jclepro.2022.135412
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      M Sturini, A Speltini, F Maraschi, A Profumo, L Pretali, E A Irastorza, E Fasani, A Albini. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Applied Catalysis B: Environmental, 2012, 119–120: 32–39 
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2012.02.008
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      X Zheng, S Xu, Y Wang, X Sun, Y Gao, B Gao. Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. Journal of Colloid and Interface Science, 2018, 527: 202–213 
														     														     	 
														     															     		https://doi.org/10.1016/j.jcis.2018.05.054
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |