|
|
Conversion of syngas into lower olefins over a hybrid catalyst system |
Qiao Zhao1,2( ), Hongyu Wang1,3, Haoting Liang1, Xiaoxue Han1, Chongyang Wei1, Shiwei Wang4, Yue Wang1, Shouying Huang1,4( ), Xinbin Ma1 |
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China 3. State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China 4. Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo 315200, China |
|
|
Abstract Lower olefins, produced from syngas through Fischer-Tropsch synthesis, has been gaining worldwide attention as a non-petroleum route. However, the process demonstrates limited selectivity for target products. Herein, a hybrid catalyst system utilizing Fe-based catalyst and SAPO-34 was shown to enhance the selectivity toward lower olefins. A comprehensive study was conducted to examine the impact of various operating conditions on catalytic performance, such as space velocity, pressure, and temperature, as well as catalyst combinations, including loading pattern, and mass ratio of metal and zeolite. The findings indicated that the addition of SAPO-34 was beneficial for enhancing catalytic activity. Furthermore, compared with AlPO-34 zeolite, the strong-acid site on SAPO-34 was identified to crack the long-chain hydrocarbons, thus contributing to the lower olefin formation. Nevertheless, an excess of strong-acid sites was found to detrimentally impact the selectivity of lower olefins, attributed to the increased aromatization and polymerization of lower olefins. The detailed analysis of a hybrid catalyst in Fischer-Tropsch synthesis provides a practical strategy for improving lower olefins selectivity, and has broader implications for the application of hybrid catalyst in diverse catalytic systems.
|
Keywords
Fischer-Tropsch synthesis
lower olefins
SAPO-34
hybrid catalyst
Fe-based catalyst
|
Corresponding Author(s):
Qiao Zhao,Shouying Huang
|
Just Accepted Date: 29 April 2024
Issue Date: 08 July 2024
|
|
1 |
H M Torres Galvis , K P de Jong . Catalysts for production of lower olefins from synthesis gas: a review. ACS Catalysis, 2013, 3(9): 2130–2149
https://doi.org/10.1021/cs4003436
|
2 |
P Zhai , Y Li , M Wang , J Liu , Z Cao , J Zhang , Y Xu , X Liu , Y W Li , Q Zhu . et al.. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem, 2021, 7(11): 3027–3051
https://doi.org/10.1016/j.chempr.2021.08.019
|
3 |
H M Torres Galvis , J H Bitter , C B Khare , M Ruitenbeek , A I Dugulan , K P de Jong . Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6070): 835–838
https://doi.org/10.1126/science.1215614
|
4 |
J Zhou , W Chu , H Zhang , H Xu , T Zhang . Effect of Fe content on FeMn catalysts for light alkenes synthesis. Frontiers of Chemical Engineering in China, 2008, 2(3): 315–318
https://doi.org/10.1007/s11705-008-0050-z
|
5 |
W Zhou , K Cheng , J Kang , C Zhou , V Subramanian , Q Zhang , Y Wang . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228
https://doi.org/10.1039/C8CS00502H
|
6 |
Q Zhang , J Kang , Y Wang . Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem, 2010, 2(9): 1030–1058
https://doi.org/10.1002/cctc.201000071
|
7 |
H J Wan , B S Wu , C H Zhang , H W Xiang , Y W Li , B F Xu , F Yi . Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catalysis Communications, 2007, 8(10): 1538–1545
https://doi.org/10.1016/j.catcom.2007.01.002
|
8 |
H O Torshizi , A Nakhaei Pour , A Mohammadi , Y Zamani , S M Kamali Shahri . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2020, 15(2): 299–309
https://doi.org/10.1007/s11705-020-1925-x
|
9 |
Y Yuan , S Huang , H Wang , Y Wang , J Wang , J Lv , Z Li , X Ma . Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins: promoter and size effects. ChemCatChem, 2017, 9(16): 3144–3152
https://doi.org/10.1002/cctc.201700792
|
10 |
X Yang , J Yang , Y Wang , T Zhao , H Ben , X Li , A Holmen , Y Huang , D Chen . Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300: 120716–120723
https://doi.org/10.1016/j.apcatb.2021.120716
|
11 |
S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe-Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
https://doi.org/10.1007/s12209-023-00360-3
|
12 |
Q Zhao , S Huang , X Han , J Chen , J Wang , A Rykov , Y Wang , M Wang , J Lv , X Ma . Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis. Carbon, 2021, 173: 364–375
https://doi.org/10.1016/j.carbon.2020.11.019
|
13 |
Y Wang , S Huang , X Teng , H Wang , J Wang , Q Zhao , Y Wang , X Ma . Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: effects of crystallization time. Frontiers of Chemical Science and Engineering, 2020, 14(5): 802–812
https://doi.org/10.1007/s11705-019-1866-4
|
14 |
A Ramirez , X Gong , M Caglayan , S F Nastase , E Abou-Hamad , L Gevers , L Cavallo , A Dutta Chowdhury , J Gascon . Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12(1): 5914–5926
https://doi.org/10.1038/s41467-021-26090-5
|
15 |
Q Sun , N Wang , J Yu . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442–2104478
https://doi.org/10.1002/adma.202104442
|
16 |
L Yang , C Wang , L Zhang , W Dai , Y Chu , J Xu , G Wu , M Gao , W Liu , Z Xu . et al.. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications, 2021, 12(1): 4661–4671
https://doi.org/10.1038/s41467-021-24403-2
|
17 |
X Pan , F Jiao , D Miao , X Bao . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
https://doi.org/10.1021/acs.chemrev.0c01012
|
18 |
T Qiu , L Wang , S Lv , B Sun , Y Zhang , Z Liu , W Yang , J Li . SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 2017, 203: 811–816
https://doi.org/10.1016/j.fuel.2017.05.043
|
19 |
J Přech , Pedrolo D R Strossi , N R Marcilio , B Gu , A S Peregudova , M Mazur , V V Ordomsky , V Valtchev , A Y Khodakov . Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels. ACS Catalysis, 2020, 10(4): 2544–2555
https://doi.org/10.1021/acscatal.9b04421
|
20 |
W Dai , G Cao , L Yang , G Wu , M Dyballa , M Hunger , N Guan , L Li . Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density. Catalysis Science & Technology, 2017, 7(3): 607–618
https://doi.org/10.1039/C6CY02564A
|
21 |
L Xu , A Du , Y Wei , Y Wang , Z Yu , Y He , X Zhang , Z Liu . Synthesis of SAPO-34 with only Si(4Al) species: effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Microporous and Mesoporous Materials, 2008, 115(3): 332–337
https://doi.org/10.1016/j.micromeso.2008.02.001
|
22 |
X Liu , W Zhou , Y Yang , K Cheng , J Kang , L Zhang , G Zhang , X Min , Q Zhang , Y Wang . Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 2018, 9(20): 4708–4718
https://doi.org/10.1039/C8SC01597J
|
23 |
A H Assen , T Virdis , W De Moor , A Moussa , M Eddaoudi , G Baron , J F M Denayer , Y Belmabkhout . Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413: 127388–127395
https://doi.org/10.1016/j.cej.2020.127388
|
24 |
A H Nasser , L Guo , H ELnaggar , Y Wang , X Guo , A AbdelMoneim , N Tsubaki . Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Advances, 2018, 8(27): 14854–14863
https://doi.org/10.1039/C8RA02193G
|
25 |
Y Xu , D Liu , X Liu . Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A, General, 2018, 552: 168–183
https://doi.org/10.1016/j.apcata.2018.01.012
|
26 |
J H Kim , G B Rhim , N Choi , M H Youn , D H Chun , S Heo . A hybrid modeling framework for efficient development of Fischer-Tropsch kinetic models. Journal of Industrial and Engineering Chemistry, 2023, 118: 318–329
https://doi.org/10.1016/j.jiec.2022.11.016
|
27 |
B Todic , L Nowicki , N Nikacevic , D B Bukur . Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst: effect of process conditions. Catalysis Today, 2016, 261: 28–39
https://doi.org/10.1016/j.cattod.2015.09.005
|
28 |
L Wu , Z Liu , L Xia , M Qiu , X Liu , H Zhu , Y Sun . Effect of SAPO-34 molecular sieve morphology on methanol to olefins performance. Chinese Journal of Catalysis, 2013, 34(7): 1348–1356
https://doi.org/10.1016/S1872-2067(12)60575-0
|
29 |
J Thiessen , A Rose , J Meyer , A Jess , D Curulla-Ferré . Effects of manganese and reduction promoters on carbon nanotube supported cobalt catalysts in Fischer-Tropsch synthesis. Microporous and Mesoporous Materials, 2012, 164: 199–206
https://doi.org/10.1016/j.micromeso.2012.05.013
|
30 |
Q Zhang , K Cheng , J Kang , W Deng , Y Wang . Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem, 2014, 7(5): 1251–1264
https://doi.org/10.1002/cssc.201300797
|
31 |
Y N Wang , W P Ma , Y J Lu , J Yang , Y Y Xu , H W Xiang , Y W Li , Y L Zhao , B J Zhang . Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst. Fuel, 2003, 82(2): 195–213
https://doi.org/10.1016/S0016-2361(02)00154-0
|
32 |
Y Li , M Wang , S Liu , F Wu , Q Zhang , S Zhang , K Cheng , Y Wang . Distance for communication between metal and acid sites for syngas conversion. ACS Catalysis, 2022, 12(15): 8793–8801
https://doi.org/10.1021/acscatal.2c02125
|
33 |
C C Amoo , C Xing , N Tsubaki , J Sun . Tandem reactions over zeolite-based catalysts in syngas conversion. ACS Central Science, 2022, 8(8): 1047–1062
https://doi.org/10.1021/acscentsci.2c00434
|
34 |
P Gao , S Dang , S Li , X Bu , Z Liu , M Qiu , C Yang , H Wang , L Zhong , Y Han . et al.. Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catalysis, 2017, 8(1): 571–578
https://doi.org/10.1021/acscatal.7b02649
|
35 |
J Wei , R Yao , Q Ge , Z Wen , X Ji , C Fang , J Zhang , H Xu , J Sun . Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catalysis, 2018, 8(11): 9958–9967
https://doi.org/10.1021/acscatal.8b02267
|
36 |
Y Zhu , X Pan , F Jiao , J Li , J Yang , M Ding , Y Han , Z Liu , X Bao . Role of manganese oxide in syngas conversion to light olefins. ACS Catalysis, 2017, 7(4): 2800–2804
https://doi.org/10.1021/acscatal.7b00221
|
37 |
N Rahimi , R Karimzadeh . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A, General, 2011, 398(1-2): 1–17
https://doi.org/10.1016/j.apcata.2011.03.009
|
38 |
Q Huang , Y Tang , S Wang , Y Chi , J Yan . Effect of cellulose and polyvinyl chloride interactions on the catalytic cracking of tar contained in syngas. Energy & Fuels, 2016, 30(6): 4888–4894
https://doi.org/10.1021/acs.energyfuels.6b00432
|
39 |
J L Weber , I Dugulan , P E de Jongh , K P de Jong . Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics. ChemCatChem, 2018, 10(5): 1107–1112
https://doi.org/10.1002/cctc.201701667
|
40 |
Y Xu , J Liu , G Ma , J Wang , Q Wang , J Lin , H Wang , C Zhang , M Ding . Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts. Molecular Catalysis, 2018, 454: 104–113
https://doi.org/10.1016/j.mcat.2018.05.019
|
41 |
T Wang , Y Xu , C Shi , F Jiang , B Liu , X Liu . Direct production of aromatics from syngas over a hybrid FeMn Fischer-Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 2019, 9(15): 3933–3946
https://doi.org/10.1039/C9CY00750D
|
42 |
L Wu , Z Liu , M Qiu , C Yang , L Xia , X Liu , Y Sun . Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reaction Kinetics, Mechanisms and Catalysis, 2013, 111(1): 319–334
https://doi.org/10.1007/s11144-013-0639-1
|
43 |
C Sun , Y Wang , Z Wang , H Chen , X Wang , H Li , L Sun , C Fan , C Wang , X Zhang . Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction. Comptes Rendus Chimie, 2018, 21(1): 61–70
https://doi.org/10.1016/j.crci.2017.11.006
|
44 |
H D KimH T SongA FazeliA Alizadeh EslamiY S NohN Ghaffari SaeidabadK Y LeeD J Moon. CO/CO2 hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. Catalysis Today, 2022, 388–389: 410–416
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|