Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (10) : 116    https://doi.org/10.1007/s11705-024-2467-4
Conversion of syngas into lower olefins over a hybrid catalyst system
Qiao Zhao1,2(), Hongyu Wang1,3, Haoting Liang1, Xiaoxue Han1, Chongyang Wei1, Shiwei Wang4, Yue Wang1, Shouying Huang1,4(), Xinbin Ma1
1. Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
3. State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
4. Zhejiang Institute of Tianjin University, Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Ningbo 315200, China
 Download: PDF(1387 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lower olefins, produced from syngas through Fischer-Tropsch synthesis, has been gaining worldwide attention as a non-petroleum route. However, the process demonstrates limited selectivity for target products. Herein, a hybrid catalyst system utilizing Fe-based catalyst and SAPO-34 was shown to enhance the selectivity toward lower olefins. A comprehensive study was conducted to examine the impact of various operating conditions on catalytic performance, such as space velocity, pressure, and temperature, as well as catalyst combinations, including loading pattern, and mass ratio of metal and zeolite. The findings indicated that the addition of SAPO-34 was beneficial for enhancing catalytic activity. Furthermore, compared with AlPO-34 zeolite, the strong-acid site on SAPO-34 was identified to crack the long-chain hydrocarbons, thus contributing to the lower olefin formation. Nevertheless, an excess of strong-acid sites was found to detrimentally impact the selectivity of lower olefins, attributed to the increased aromatization and polymerization of lower olefins. The detailed analysis of a hybrid catalyst in Fischer-Tropsch synthesis provides a practical strategy for improving lower olefins selectivity, and has broader implications for the application of hybrid catalyst in diverse catalytic systems.

Keywords Fischer-Tropsch synthesis      lower olefins      SAPO-34      hybrid catalyst      Fe-based catalyst     
Corresponding Author(s): Qiao Zhao,Shouying Huang   
Just Accepted Date: 29 April 2024   Issue Date: 08 July 2024
 Cite this article:   
Qiao Zhao,Hongyu Wang,Haoting Liang, et al. Conversion of syngas into lower olefins over a hybrid catalyst system[J]. Front. Chem. Sci. Eng., 2024, 18(10): 116.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2467-4
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I10/116
Fig.1  XRD patterns of AlPO-34, SAPO-34-1, SAPO-34-2, and SAPO-34-3 zeolites.
Fig.2  Effect of space velocity on catalytic performance. (a) Product distribution, TOS = 15 h; (b) catalyst stability. Reaction condition: WHSV = 27000–54000 mL?g–1?h–1, P = 2.0 MPa, T = 400 °C, FeKS/Al2O3: SAPO-34-2 = 1:5, granules (40–60 mesh).
Fig.3  Effect of reaction pressure on catalytic performance. (a) Product distribution, TOS = 20 h; (b) catalyst stability. Reaction condition: WHSV = 27000 mL?g–1?h–1, P = 0.5–2.0 MPa, T = 360 °C, FeKS/Al2O3: SAPO-34-2 = 1:5, granules (40–60 mesh).
Fig.4  Effect of temperature on catalytic performance. (a) Product distribution, TOS = 30 h; (b) catalyst stability. Reaction condition: WHSV = 27000 mL?g–1?h–1, P = 1.0 MPa, T = 340–360 °C, FeKS/Al2O3: SAPO-34-2 = 1:5, granules (40–60 mesh).
Fig.5  Investigation of two-component loading method. (a) Schematic diagram of loading method; (b) product distribution; (c) catalyst stability; (d) SEM image of powder mixing. Reaction condition: WHSV = 27000 mL?g–1?h–1, P = 1.0 MPa, T = 340 °C, FeKS/Al2O3:SAPO-34-2 = 1:5.
Fig.6  Effect of different ratios on catalytic performance. (a) Product distribution, TOS = 30 h; (b) calculation of chain growth probability α. Reaction condition: WHSV = 27000 mL?g–1?h–1, P = 2.0 MPa, T = 340 °C, FeKS/Al2O3:SAPO-34-2 = 1:0–1:7, granules (40–60 mesh).
CatalystsFTY/(μmolCO?g–1·s–1)CO conversion/%CO2 selectivity/%Selectivity/%O/Pa)
CH4C2–4oC2–4=C5+Oxygenates
FeKS + quartz43245.746.011.95.732.547.12.85.7
FeKS + AlPO-3451051.343.214.17.833.442.32.44.3
FeKS + SAPO-34-146247.844.713.17.637.140.02.24.9
FeKS + SAPO-34-241145.848.714.07.739.136.32.95.1
FeKS + SAPO-34-340441.344.113.47.438.138.92.25.1
Tab.1  Catalytic performance of different catalysts
Fig.7  Comparison of catalytic performance of different catalysts. (a) Catalyst stability; (b) selectivity of lower olefins and the ratio of olefin to paraffin. Reaction condition: WHSV = 27000 mL?g–1?h–1, P = 1.0 MPa, T = 340 °C, FeKS/Al2O3:quartz or zeolite = 1:7, granules (40–60 mesh).
Fig.8  NH3-TPD profiles of zeolites.
1 H M Torres Galvis , K P de Jong . Catalysts for production of lower olefins from synthesis gas: a review. ACS Catalysis, 2013, 3(9): 2130–2149
https://doi.org/10.1021/cs4003436
2 P Zhai , Y Li , M Wang , J Liu , Z Cao , J Zhang , Y Xu , X Liu , Y W Li , Q Zhu . et al.. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route. Chem, 2021, 7(11): 3027–3051
https://doi.org/10.1016/j.chempr.2021.08.019
3 H M Torres Galvis , J H Bitter , C B Khare , M Ruitenbeek , A I Dugulan , K P de Jong . Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6070): 835–838
https://doi.org/10.1126/science.1215614
4 J Zhou , W Chu , H Zhang , H Xu , T Zhang . Effect of Fe content on FeMn catalysts for light alkenes synthesis. Frontiers of Chemical Engineering in China, 2008, 2(3): 315–318
https://doi.org/10.1007/s11705-008-0050-z
5 W Zhou , K Cheng , J Kang , C Zhou , V Subramanian , Q Zhang , Y Wang . New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48(12): 3193–3228
https://doi.org/10.1039/C8CS00502H
6 Q Zhang , J Kang , Y Wang . Development of novel catalysts for Fischer-Tropsch synthesis: tuning the product selectivity. ChemCatChem, 2010, 2(9): 1030–1058
https://doi.org/10.1002/cctc.201000071
7 H J Wan , B S Wu , C H Zhang , H W Xiang , Y W Li , B F Xu , F Yi . Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis. Catalysis Communications, 2007, 8(10): 1538–1545
https://doi.org/10.1016/j.catcom.2007.01.002
8 H O Torshizi , A Nakhaei Pour , A Mohammadi , Y Zamani , S M Kamali Shahri . Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity. Frontiers of Chemical Science and Engineering, 2020, 15(2): 299–309
https://doi.org/10.1007/s11705-020-1925-x
9 Y Yuan , S Huang , H Wang , Y Wang , J Wang , J Lv , Z Li , X Ma . Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins: promoter and size effects. ChemCatChem, 2017, 9(16): 3144–3152
https://doi.org/10.1002/cctc.201700792
10 X Yang , J Yang , Y Wang , T Zhao , H Ben , X Li , A Holmen , Y Huang , D Chen . Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300: 120716–120723
https://doi.org/10.1016/j.apcatb.2021.120716
11 S Liu , Q Zhao , X Han , C Wei , H Liang , Y Wang , S Huang , X Ma . Proximity effect of Fe-Zn bimetallic catalysts on CO2 hydrogenation performance. Transactions of Tianjin University, 2023, 29(4): 293–303
https://doi.org/10.1007/s12209-023-00360-3
12 Q Zhao , S Huang , X Han , J Chen , J Wang , A Rykov , Y Wang , M Wang , J Lv , X Ma . Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer-Tropsch synthesis. Carbon, 2021, 173: 364–375
https://doi.org/10.1016/j.carbon.2020.11.019
13 Y Wang , S Huang , X Teng , H Wang , J Wang , Q Zhao , Y Wang , X Ma . Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: effects of crystallization time. Frontiers of Chemical Science and Engineering, 2020, 14(5): 802–812
https://doi.org/10.1007/s11705-019-1866-4
14 A Ramirez , X Gong , M Caglayan , S F Nastase , E Abou-Hamad , L Gevers , L Cavallo , A Dutta Chowdhury , J Gascon . Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nature Communications, 2021, 12(1): 5914–5926
https://doi.org/10.1038/s41467-021-26090-5
15 Q Sun , N Wang , J Yu . Advances in catalytic applications of zeolite-supported metal catalysts. Advanced Materials, 2021, 33(51): 2104442–2104478
https://doi.org/10.1002/adma.202104442
16 L Yang , C Wang , L Zhang , W Dai , Y Chu , J Xu , G Wu , M Gao , W Liu , Z Xu . et al.. Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion. Nature Communications, 2021, 12(1): 4661–4671
https://doi.org/10.1038/s41467-021-24403-2
17 X Pan , F Jiao , D Miao , X Bao . Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chemical Reviews, 2021, 121(11): 6588–6609
https://doi.org/10.1021/acs.chemrev.0c01012
18 T Qiu , L Wang , S Lv , B Sun , Y Zhang , Z Liu , W Yang , J Li . SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel, 2017, 203: 811–816
https://doi.org/10.1016/j.fuel.2017.05.043
19 J Přech , Pedrolo D R Strossi , N R Marcilio , B Gu , A S Peregudova , M Mazur , V V Ordomsky , V Valtchev , A Y Khodakov . Core-shell metal zeolite composite catalysts for in situ processing of Fischer-Tropsch hydrocarbons to gasoline type fuels. ACS Catalysis, 2020, 10(4): 2544–2555
https://doi.org/10.1021/acscatal.9b04421
20 W Dai , G Cao , L Yang , G Wu , M Dyballa , M Hunger , N Guan , L Li . Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density. Catalysis Science & Technology, 2017, 7(3): 607–618
https://doi.org/10.1039/C6CY02564A
21 L Xu , A Du , Y Wei , Y Wang , Z Yu , Y He , X Zhang , Z Liu . Synthesis of SAPO-34 with only Si(4Al) species: effect of Si contents on Si incorporation mechanism and Si coordination environment of SAPO-34. Microporous and Mesoporous Materials, 2008, 115(3): 332–337
https://doi.org/10.1016/j.micromeso.2008.02.001
22 X Liu , W Zhou , Y Yang , K Cheng , J Kang , L Zhang , G Zhang , X Min , Q Zhang , Y Wang . Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chemical Science, 2018, 9(20): 4708–4718
https://doi.org/10.1039/C8SC01597J
23 A H Assen , T Virdis , W De Moor , A Moussa , M Eddaoudi , G Baron , J F M Denayer , Y Belmabkhout . Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413: 127388–127395
https://doi.org/10.1016/j.cej.2020.127388
24 A H Nasser , L Guo , H ELnaggar , Y Wang , X Guo , A AbdelMoneim , N Tsubaki . Mn-Fe nanoparticles on a reduced graphene oxide catalyst for enhanced olefin production from syngas in a slurry reactor. RSC Advances, 2018, 8(27): 14854–14863
https://doi.org/10.1039/C8RA02193G
25 Y Xu , D Liu , X Liu . Conversion of syngas toward aromatics over hybrid Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolites. Applied Catalysis A, General, 2018, 552: 168–183
https://doi.org/10.1016/j.apcata.2018.01.012
26 J H Kim , G B Rhim , N Choi , M H Youn , D H Chun , S Heo . A hybrid modeling framework for efficient development of Fischer-Tropsch kinetic models. Journal of Industrial and Engineering Chemistry, 2023, 118: 318–329
https://doi.org/10.1016/j.jiec.2022.11.016
27 B Todic , L Nowicki , N Nikacevic , D B Bukur . Fischer-Tropsch synthesis product selectivity over an industrial iron-based catalyst: effect of process conditions. Catalysis Today, 2016, 261: 28–39
https://doi.org/10.1016/j.cattod.2015.09.005
28 L Wu , Z Liu , L Xia , M Qiu , X Liu , H Zhu , Y Sun . Effect of SAPO-34 molecular sieve morphology on methanol to olefins performance. Chinese Journal of Catalysis, 2013, 34(7): 1348–1356
https://doi.org/10.1016/S1872-2067(12)60575-0
29 J Thiessen , A Rose , J Meyer , A Jess , D Curulla-Ferré . Effects of manganese and reduction promoters on carbon nanotube supported cobalt catalysts in Fischer-Tropsch synthesis. Microporous and Mesoporous Materials, 2012, 164: 199–206
https://doi.org/10.1016/j.micromeso.2012.05.013
30 Q Zhang , K Cheng , J Kang , W Deng , Y Wang . Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity. ChemSusChem, 2014, 7(5): 1251–1264
https://doi.org/10.1002/cssc.201300797
31 Y N Wang , W P Ma , Y J Lu , J Yang , Y Y Xu , H W Xiang , Y W Li , Y L Zhao , B J Zhang . Kinetics modelling of Fischer-Tropsch synthesis over an industrial Fe-Cu-K catalyst. Fuel, 2003, 82(2): 195–213
https://doi.org/10.1016/S0016-2361(02)00154-0
32 Y Li , M Wang , S Liu , F Wu , Q Zhang , S Zhang , K Cheng , Y Wang . Distance for communication between metal and acid sites for syngas conversion. ACS Catalysis, 2022, 12(15): 8793–8801
https://doi.org/10.1021/acscatal.2c02125
33 C C Amoo , C Xing , N Tsubaki , J Sun . Tandem reactions over zeolite-based catalysts in syngas conversion. ACS Central Science, 2022, 8(8): 1047–1062
https://doi.org/10.1021/acscentsci.2c00434
34 P Gao , S Dang , S Li , X Bu , Z Liu , M Qiu , C Yang , H Wang , L Zhong , Y Han . et al.. Direct production of lower olefins from CO2 conversion via bifunctional catalysis. ACS Catalysis, 2017, 8(1): 571–578
https://doi.org/10.1021/acscatal.7b02649
35 J Wei , R Yao , Q Ge , Z Wen , X Ji , C Fang , J Zhang , H Xu , J Sun . Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts. ACS Catalysis, 2018, 8(11): 9958–9967
https://doi.org/10.1021/acscatal.8b02267
36 Y Zhu , X Pan , F Jiao , J Li , J Yang , M Ding , Y Han , Z Liu , X Bao . Role of manganese oxide in syngas conversion to light olefins. ACS Catalysis, 2017, 7(4): 2800–2804
https://doi.org/10.1021/acscatal.7b00221
37 N Rahimi , R Karimzadeh . Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Applied Catalysis A, General, 2011, 398(1-2): 1–17
https://doi.org/10.1016/j.apcata.2011.03.009
38 Q Huang , Y Tang , S Wang , Y Chi , J Yan . Effect of cellulose and polyvinyl chloride interactions on the catalytic cracking of tar contained in syngas. Energy & Fuels, 2016, 30(6): 4888–4894
https://doi.org/10.1021/acs.energyfuels.6b00432
39 J L Weber , I Dugulan , P E de Jongh , K P de Jong . Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics. ChemCatChem, 2018, 10(5): 1107–1112
https://doi.org/10.1002/cctc.201701667
40 Y Xu , J Liu , G Ma , J Wang , Q Wang , J Lin , H Wang , C Zhang , M Ding . Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts. Molecular Catalysis, 2018, 454: 104–113
https://doi.org/10.1016/j.mcat.2018.05.019
41 T Wang , Y Xu , C Shi , F Jiang , B Liu , X Liu . Direct production of aromatics from syngas over a hybrid FeMn Fischer-Tropsch catalyst and HZSM-5 zeolite: local environment effect and mechanism-directed tuning of the aromatic selectivity. Catalysis Science & Technology, 2019, 9(15): 3933–3946
https://doi.org/10.1039/C9CY00750D
42 L Wu , Z Liu , M Qiu , C Yang , L Xia , X Liu , Y Sun . Morphology control of SAPO-34 by microwave synthesis and their performance in the methanol to olefins reaction. Reaction Kinetics, Mechanisms and Catalysis, 2013, 111(1): 319–334
https://doi.org/10.1007/s11144-013-0639-1
43 C Sun , Y Wang , Z Wang , H Chen , X Wang , H Li , L Sun , C Fan , C Wang , X Zhang . Fabrication of hierarchical ZnSAPO-34 by alkali treatment with improved catalytic performance in the methanol-to-olefin reaction. Comptes Rendus Chimie, 2018, 21(1): 61–70
https://doi.org/10.1016/j.crci.2017.11.006
44 H D KimH T SongA FazeliA Alizadeh EslamiY S NohN Ghaffari SaeidabadK Y LeeD J Moon. CO/CO2 hydrogenation for the production of lighter hydrocarbons over SAPO-34 modified hybrid FTS catalysts. Catalysis Today, 2022, 388–389: 410–416
[1] FCE-24021-OF-ZQ_suppl_1 Download
[1] Haoting Liang, Qiao Zhao, Shengkun Liu, Chongyang Wei, Yidan Wang, Yue Wang, Shouying Huang, Xinbin Ma. Synergistic effect of Fe-Mn bimetallic sites with close proximity for enhanced CO2 hydrogenation performance[J]. Front. Chem. Sci. Eng., 2024, 18(11): 140-.
[2] Shitong Cui, Jun Ge. Diffusion process in enzyme–metal hybrid catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(6): 921-929.
[3] Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri. Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: role of support and metal nanoparticle size on catalyst activity and products selectivity[J]. Front. Chem. Sci. Eng., 2021, 15(2): 299-309.
[4] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[5] Ignacio Jorge Castellanos-Beltran, Gnouyaro Palla Assima, Jean-Michel Lavoie. Effect of temperature in the conversion of methanol to olefins (MTO) using an extruded SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2018, 12(2): 226-238.
[6] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[7] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed