Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (11) : 133    https://doi.org/10.1007/s11705-024-2480-7
Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking
Hassan Alhassawi1(), Edidiong Asuquo1, Shima Zainal1, Yuxin Zhang1, Abdullah Alhelali1, Zhipeng Qie1,2, Christopher M. A. Parlett1,3,4,5, Carmine D’Agostino1, Xiaolei Fan1, Arthur A. Garforth1()
1. Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester M13 9PL, UK
2. Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
3. Diamond Light Source Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
4. University of Manchester at Harwell, Diamond Light Source Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
5. UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, UK
 Download: PDF(1105 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Framework materials such as zeolites and mesoporous silicas are commonly used for many applications, especially catalysis and separation. Here zeolite-mesoporous silica composite catalysts (employing zeolite Y, ZSM-5, KIT-6, SBA-15 and MCM-41 mesoporous silica) were prepared (with different weight percent of zeolite Y and ZSM-5) and assessed for catalytic cracking (using n-heptane, as the model compound at 550 °C) with the aim to improve the selectivity/yield of light olefins of ethylene and propylene from n-heptane. Physicochemical properties of the parent zeolites and the prepared composites were characterized comprehensively using several techniques including X-ray diffraction, nitrogen physisorption, scanning electron microscopy, fourier transform infrared spectroscopy, pulsed-field gradient nuclear magnetic resonance and thermogravimetric analysis. Catalytic cracking results showed that the ZY/ZSM-5/KIT-6 composite (20:20:60 wt %) achieved a high n-heptane conversion of 85% with approximately 6% selectivity to ethylene/propylene. In contrast, the ZY/ZSM-5/SBA-15 composite achieved a higher conversion of 95% and an ethylene/propylene ratio of 8%, indicating a more efficient process in terms of both conversion and selectivity. Magnetic resonance relaxation analysis of the ZY/ZSM-5/KIT-6 (20:20:60) catalyst confirmed a micro-mesoporous environment that influences n-heptane diffusion and mass transfer. As zeolite Y and ZSM-5 have micropores, n-heptane can move and undergo hydrogen transfer reactions, whereas KIT-6 has mesopores that facilitate n-heptane’s accessibility to the active sites of zeolite Y and ZSM-5.

Keywords zeolites      mesoporous silica      composite catalysts      catalytic cracking      light olefins     
Corresponding Author(s): Hassan Alhassawi,Arthur A. Garforth   
Just Accepted Date: 31 May 2024   Issue Date: 29 August 2024
 Cite this article:   
Hassan Alhassawi,Edidiong Asuquo,Shima Zainal, et al. Formulation of zeolite-mesoporous silica composite catalysts for light olefin production from catalytic cracking[J]. Front. Chem. Sci. Eng., 2024, 18(11): 133.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2480-7
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I11/133
Composite catalyst Weight percent of the component/wt %
ZY ZSM-5 Mesoporous silica
ZY/ZSM-5/KIT-6(35:5:60) 35 5 60
ZY/ZSM-5/KIT-6(30:10:60) 30 10 60
ZY/ZSM-5KIT-6(20:20:60) 20 20 60
ZY/ZSM-5/SBA-15(35:5:60) 35 5 60
ZY/ZSM-5/SBA-15(30:10:60) 30 10 60
ZY/ZSM-5/SBA-15(20:20:60) 20 20 60
ZY/ZSM-5/MCM-41(35:5:60) 35 5 60
ZY/ZSM-5/MCM-41(30:10:60) 30 10 60
ZY/ZSM-5/MCM-41(20:20:60) 20 20 60
Tab.1  Proportion of components in the formulated composite catalysts
Fig.1  Schematic of the experimental rig for performing the catalytic cracking reaction. 1. pressure regulators for N2 and air; 2. valves; 3. mass flow controllers; 4. bubblers; 5. chiller bath; 6. pressure gauge; 7. pressure relief valve; 8. reactor tube; 9. furnace; 10. glass wool; 11. catalyst bed; 12. glass beads; 13. GC; 14. data collector.
Fig.2  (a) Small-angle XRD patterns of the mesoporous silicas; wide-angle XRD diffraction patterns of (b) ZY/ZSM-5/KIT-6 group; (c) ZY/ZSM-5/MCM-41 group, and (d) ZY/ZSM-5/SBA-15.
Materials Specific surface areaa)/(m2·g–1) Specific surface areab)/(cm3·g–1) Si/Alc)
SBETa) Sextb) Smicroc) Vtotald) Vmicroe) Vmesof)
KIT-6 755 559 202 0.34 0.11 0.23
MCM-41 810 767 42 0.33 0.02 0.31
SBA-15 755 442 312 0.66 0.16 0.5
ZY/ZSM-5/KIT-6(35:5:60) 601 418 183 0.30 0.1 0.2 48.4
ZY/ZSM-5/KIT-6(30:10:60) 585 351 234 0.27 0.12 0.15 47.5
ZY/ZSM-5/KIT-6(20:20:60) 541 331 211 0.25 0.11 0.14 42.1
ZY/ZSM-5/MCM-41(35:5:60) 726 564 161 0.31 0.08 0.23 36.7
ZY/ZSM-5/MCM-41(30:10:60) 705 535 169 0.31 0.09 0.22 36.2
ZY/ZSM-5/MCM-41(20:20:60) 718 583 135 0.31 0.07 0.24 36.3
ZY/ZSM-5/SBA-15(35:5:60) 604 391 212 0.30 0.11 0.19 16
ZY/ZSM-5/SBA-15(30:10:60) 535 301 234 0.25 0.12 0.13 20.4
ZY/ZSM-5/SBA-15(20:20:60) 577 368 210 0.30 0.11 0.19 26.7
Tab.2  Textural properties of the mesoporous silicas and the composite catalysts
Fig.3  (a) N2 adsorption-desorption isotherms of ZY/ZSM-5/KIT-6(20:20:60), ZY/ZSM-5/MCM-41(20:20:60), and ZY/ZSM-5/SBA-15(20:20:60), and (b) the associated PSD by the BJH method.
Fig.4  TEM images of the selected composite catalysts: (a) ZY/ZSM-5/KIT-6 (20:20:60); (b) ZY/ZSM-5/SBA-15 (20:20:60), and (c) ZY/ZSM-5/MCM-41 (20:20:60).
Fig.5  (a) Conversions of n-C7 and (b) total yields of LOs over different composite catalysts (conditions: t = 550 °C, WHSV = 0.4 h–1, ToS = 4 h, P = atmospheric pressure).
Composite catalyst Conversion C2=–C4=a) C2=/C3= C2=/C2 C3=/C3 C4=/C4 O/Pb) HTCc)
%
ZY/ZSM-5/SBA-15(20:20:60) 84 26.2 0.8 2.5 0.6 0.4 0.7 0.7
ZY/ZSM-5/KIT-6(20:20:60) 94 26.6 0.6 2.5 0.7 0.5 0.7 0.7
ZY/ZSM-5/MCM-41(20:20:60) 82 25.5 0.5 2.4 0.7 0.5 1.1 0.6
Tab.3  Averaged activity and selectivity data of n-C7 cracking over the selected composite catalysts at 550 °C, 0.4 h–1 and atmospheric pressure
Fig.6  Longevity tests of the selected composite catalysts at 550 °C and atmospheric pressure (ToS = 12 h and WHSV = 0.4 h–1): (a) n-C7 conversion; (b) total yield of LOs; (c) product distribution of LOs, and (d) distribution of gas yields.
Fig.7  TGA profiles of the used ZY/ZSM-5/KIT-6 (20:20:60), ZY/ZSM-5/SBA-15 (20:20:60), and ZY/ZSM-5/MCM-41 (20:20:60).
Fig.8  Log10 attenuation plots of n-C7 saturated composite catalysts under investigation.
Composite Dself of n-C7 D1 (10–10 m2·s–1) D2 τ1 τ2
ZY/ZSM-5/KIT-6 (20:20:60) 32.4 11.2 ± 0.2 2.0 ± 0.2 2.9 16.3
ZY/ZSM-5/SBA-15 (20:20:60) 9.7 ± 0.1 2.4 ± 0.2 3.4 13.7
ZY/ZSM-5/MCM-41 (20:20:60) 6.9 ± 0.1 1.7 ± 0.1 4.7 19.3
Tab.4  Relevant diffusion coefficients and calculated tortuosity values by PFG-NMR
1 S Zhao , H Li , B Wang , X Yang , Y Peng , H Du , Y Zhang , D Han , Z Li . Recent advances on syng as conversion targeting light olefins. Fuel, 2022, 321: 124124
https://doi.org/10.1016/j.fuel.2022.124124
2 S Chernyak , M Corda , J Dath , V Ordomsky , A Khodakov . Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of-the-art and outlook. Chemical Society Reviews, 2022, 51(18): 7994–8044
https://doi.org/10.1039/D1CS01036K
3 S Tabibian , M Sharifzadeh . Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renewable & Sustainable Energy Reviews, 2023, 179: 113281
https://doi.org/10.1016/j.rser.2023.113281
4 B De GraafR A Y Fletcher. On-demand propylene from naphtha: preparing for change. www.digitalrefining.com. Accenture Website, 2023
5 N Fattahi , K Triantafyllidis , R Luque , A Ramazani . Zeolite-based catalysts: a valuable approach toward ester bond formation. Catalysts, 2019, 9(9): 758
https://doi.org/10.3390/catal9090758
6 M A Alabdullah , T Shoinkhorova , A Dikhtiarenko , S Ould-Chikh , A Rodriguez-Gomez , S Chung , A O Alahmadi , I Hita , S Pairis , J Hazemann . et al.. Understanding catalyst deactivation during the direct cracking of crude oil. Catalysis Science & Technology, 2022, 12(18): 5657–5670
https://doi.org/10.1039/D2CY01125E
7 A Al-Shammari , S Ali , N Al-Yassir , A Aitani , K Ogunronbi , K Al-Majnouni , S Al-Khattaf . Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures. Fuel Processing Technology, 2014, 122: 12–22
https://doi.org/10.1016/j.fuproc.2014.01.021
8 X Xian , C Ran , P Yang , Y Chu , S Zhao , L Dong . Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: experiments and mechanism. Catalysis Science & Technology, 2018, 8(16): 4241–4256
https://doi.org/10.1039/C8CY00908B
9 S Abdulridha , R Zhang , S Xu , A Tedstone , X Ou , J Gong , B Mao , M Frogley , C Bawn , Z Zhou . et al.. An efficient microwave-assisted chelation (MWAC) post-synthetic modification method to produce hierarchical Y zeolites. Microporous and Mesoporous Materials, 2021, 311: 110715
https://doi.org/10.1016/j.micromeso.2020.110715
10 B Jermy , M Siddiqui , A Aitani , M Saeed , S Al-Khattaf . Utilization of ZSM-5/MCM-41 composite as FCC catalyst additive for enhancing propylene yield from VGO cracking. Journal of Porous Materials, 2012, 19(4): 499–509
https://doi.org/10.1007/s10934-011-9499-0
11 D Zhao , Q Huo , J Feng , B Chmelka , G Stucky . Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036
https://doi.org/10.1021/ja974025i
12 D Choi , R Ryoo . Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. Journal of Materials Chemistry, 2010, 20(26): 5544–5550
https://doi.org/10.1039/c0jm00671h
13 F Kleitz , S Choi , R Ryoo . Cubic Ia 3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003, 17(17): 2136–2137
https://doi.org/10.1039/b306504a
14 L Forster , M Lutecki , H Fordsmand , L Yu , C D’Agostino . Tailoring morphology of hierarchical catalysts for tuning pore diffusion behaviour: a rational guideline exploiting bench-top pulsed-field gradient (PFG) nuclear magnetic resonance (NMR). Molecular Systems Design & Engineering, 2020, 5(7): 1193–1204
https://doi.org/10.1039/D0ME00036A
15 N La-Salvia , J Lovón-Quintana , A Lovón , G Valença . Influence of aluminium addition in the framework of MCM-41 mesoporous molecular sieve synthesized by non-hydrothermal method in an alkali-free system. Materials Research, 2017, 20(6): 1461–1469
https://doi.org/10.1590/1980-5373-mr-2016-1064
16 S Abbaspour , A Nourbakhsh , R Kalbasi , K Mackenzie . Investigating the properties of the nanocomposite (poly(4-vinyl pyridine)/Al-SBA-15): a precursor for β-SiAlON. Molecular Crystals and Liquid Crystals, 2012, 555(1): 104–111
https://doi.org/10.1080/15421406.2012.635078
17 D Zhao , J Feng , Q Huo , N Melosh , G Fredrickson , B Chmelka , G Stucky . Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552
https://doi.org/10.1126/science.279.5350.548
18 P Gaudin , S Dorge , H Nouali , D Kehrli , L Michelin , L Josien , P Fioux , L Vidal , M Soulard , M Vierling . et al.. Synthesis of Cu-Ce/KIT-6 materials for SOx removal. Applied Catalysis A, General, 2015, 504: 110–118
https://doi.org/10.1016/j.apcata.2014.11.024
19 J FlorekR Guillet-NicolasF Kleitz. Ordered mesoporous silica: synthesis and applications. Functional Materials for Energy, Sustainable Development and Biomedical Sciences, 2014, 61–100
20 R Merkache , I Fechete , M Maamache , M Bernard , P Turek , K Al-Dalama , F Garin . 3D ordered mesoporous Fe-KIT-6 catalysts for methylcyclohexane (MCP) conversion and carbon dioxide (CO2) hydrogenation for energy and environmental applications. Applied Catalysis A, General, 2015, 504: 672–681
https://doi.org/10.1016/j.apcata.2015.03.032
21 Á Beltrán-Osuna , Ribelles J Gómez , J Perilla . A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research, 2017, 19(12): 381
https://doi.org/10.1007/s11051-017-4077-2
22 Q Gao , Y Zhang , K Zhou , H Wu , J Guo , L Zhang , A Duan , Z Zhao , F Zhang , Y Zhou . Synthesis of ZSM-5/KIT-6 with a tunable pore structure and its catalytic application in the hydrodesulfurization of dibenzothiophene and diesel oil. RSC Advances, 2018, 8(51): 28879–28890
https://doi.org/10.1039/C8RA05675G
23 E Piciorus , P Svera , C Ianasi . Porous silicas from mixtures of Na2Si3O7 aqueous solution and teos. Influence of sodium silicate amount. Studia Universitatis Babes-Bolyai. Chemia, 2021, 66(1): 35–48
https://doi.org/10.24193/subbchem.2021.01.03
24 H Keshavarz , A Khavandi , S Alamolhoda , M Naimi-Jamal . pH-sensitive magnetite mesoporous silica nanocomposites for controlled drug delivery and hyperthermia. RSC Advances, 2020, 10(64): 39008–39016
https://doi.org/10.1039/D0RA06916G
25 Z Seddigi . Nature of the FTIR band in acidic zeolites. Reaction Kinetics and Catalysis Letters, 2001, 73(1): 63–70
https://doi.org/10.1023/A:1013968719834
26 K Byrappa , B Kumar . Characterization of zeolites by infrared spectroscopy. Asian Journal of Chemistry, 2007, 19(6): 4933–4935
27 R Zhang , D Raja , Y Zhang , Y Yan , A Garforth , Y Jiao , X Fan . Sequential Microwave-assisted dealumination and hydrothermal alkaline treatments of Y zeolite for preparing hierarchical mesoporous zeolite catalysts. Topics in Catalysis, 2020, 63: 340–350
https://doi.org/10.1007/s11244-020-01268-1
28 S Kouser , A Hezam , M Khadri , S Khanum . A review on zeolite imidazole frameworks: synthesis, properties, and applications. Journal of Porous Materials, 2022, 29: 663–681
https://doi.org/10.1007/s10934-021-01184-z
29 J Zang , H Yu , G Liu , M Hong , J Liu , T Chen . Research progress on modifications of zeolite Y for improved catalytic properties. Inorganics, 2023, 11(1): 22
https://doi.org/10.3390/inorganics11010022
30 M Bukhtiyarova , G Echevskii . Coke formation on zeolites Y and their deactivation model. Petroleum Chemistry, 2020, 60(4): 532–539
https://doi.org/10.1134/S0965544120040039
31 S Daniel , C Monguen , A El Kasmi , M Arshad , Z Tian . Oxidative dehydrogenation of propane to olefins promoted by Zr-modified ZSM-5. Catalysis Letters, 2023, 153(1): 285–299
https://doi.org/10.1007/s10562-022-03977-6
32 X Hou , L Zhao , Z Diao . Roles of alkenes and coke formation in the deactivation of ZSM-5 zeolites during n-pentane catalytic cracking. Catalysis Letters, 2020, 150(9): 2716–2725
https://doi.org/10.1007/s10562-020-03173-4
33 E Forman , M Trujillo , K J Ziegler , S Bradley , H Wang , S Prabhakar , S Vasenkov . Self-diffusion of heptane inside aggregates of porous alumina particles by pulsed field gradient NMR. Microporous and Mesoporous Materials, 2016, 229: 117–123
https://doi.org/10.1016/j.micromeso.2016.04.027
34 J Kärger . Measurement of diffusion in zeolites—a never ending challenge?. Adsorption, 2003, 9(1): 29–35
https://doi.org/10.1023/A:1023811229823
35 C D’Agostino , G Brett , P Miedziak , D Knight , G Hutchings , L Gladden , M Mantle . Understanding the solvent effect on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO2 catalyst: NMR diffusion and relaxation studies. Chemistry, 2012, 18(45): 14426–14433
https://doi.org/10.1002/chem.201201922
36 Z Run , D Xiao , J Yilai , C D’Agostino , Y Wenfu , X Fan . Controllable synthesis, diffusion study and catalysis of hierarchical zeolites. Chemical Journal of Chinese Universities, 2021, 42(1): 74–100
[1] FCE-24028-OF-AH_suppl_1 Download
[1] Russell F Howe. New approaches to vibrational spectroscopy of zeolite catalysts: a perspective[J]. Front. Chem. Sci. Eng., 2024, 18(11): 123-.
[2] Jiafeng Ouyang, Wenlu Guo, Lin Wang, Changming Nie, Dadong Shao, Weiqun Shi, Liyong Yuan. Magnetic KIT-6 nano-composite and its amino derivatives as convenient adsorbent for U(VI) sequestration[J]. Front. Chem. Sci. Eng., 2023, 17(12): 2037-2049.
[3] Fulong Wang, Liang Sun, Ziyu Zhang, Fengkai Yang, Jinlong Yang, Weijian Liu. Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles for bisphenol A degradation[J]. Front. Chem. Sci. Eng., 2023, 17(10): 1581-1592.
[4] Vinayak Hegde, Parimal Pandit, Pranita Rananaware, Varsha P. Brahmkhatri. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1198-1210.
[5] Xin Li, Meng Su, Yao Chen, Mehar U. Nisa, Ning Zhao, Xiangning Jiang, Zhenhua Li. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
[6] Yu-Chao Wang, Tian-Tian Li, Li Huang, Xiao-Qin Liu, Lin-Bing Sun. Fabrication of bimetallic Cu–Zn adsorbents with high dispersion by using confined space for gas adsorptive separation[J]. Front. Chem. Sci. Eng., 2022, 16(11): 1623-1631.
[7] Huan Wang, Guo Du, Jiaqing Jia, Shaohua Chen, Zhipeng Su, Rui Chen, Tiehong Chen. Hierarchically porous zeolites synthesized with carbon materials as templates[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1444-1461.
[8] Yuexin Hou, Xiaoyun Li, Minghui Sun, Chaofan Li, Syed ul Hasnain Bakhtiar, Kunhao Lei, Shen Yu, Zhao Wang, Zhiyi Hu, Lihua Chen, Bao-Lian Su. The effect of hierarchical single-crystal ZSM-5 zeolites with different Si/Al ratios on its pore structure and catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(2): 269-278.
[9] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
[10] Shuman Xu, Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaohong Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking[J]. Front. Chem. Sci. Eng., 2018, 12(4): 780-789.
[11] Shufeng Shan, Haiyan Liu, Gang Shi, Xiaojun Bao. Tuning of the active phase structure and hydrofining performance of alumina-supported tri-metallic WMoNi catalysts via phosphorus incorporation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 59-69.
[12] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[13] Weikang ZHANG, Ye TIAN. Phosphorous removal from wastewater by lanthanum modified Y zeolites[J]. Front. Chem. Sci. Eng., 2015, 9(2): 209-215.
[14] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[15] Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Front Chem Sci Eng, 2014, 8(1): 114-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed