Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (12) : 144    https://doi.org/10.1007/s11705-024-2495-0
Improving the performance of paper-based separator for lithium-ion batteries application by cellulose fiber acetylation and metal-organic framework coating
Wei Wang1(), Xiangli Long1, Liping Pang1, Dawei Shen2, Qing Wang3
1. Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, China
2. Huzhou Yongxing Lithium Battery Technology Co., Ltd., Huzhou 313000, China
3. College of Food Science and Engineering, Xinyang Agriculture and Forestry University, Xinyang 464000, China
 Download: PDF(1241 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Paper-based separator for lithium-ion battery application has attracted great attention due to its good electrolyte affinity and thermal stability. To avoid the short circuit by the micron-sized pores of paper and improve the electrochemical properties of paper-based separator, cellulose fibers were acetylated followed by wet papermaking and metal-organic framework coating. Due to the strong intermolecular interaction between acetylated cellulose fibers and N,N-dimethylformamide, the resulting separator exhibited compact microstructure. The zeolitic imidazolate framework-8 coating endowed the separator with enhanced electrolyte affinity (electrolyte contact angle of 0°), ionic conductivity (1.26 mS·cm–1), interfacial compatibility (284 Ω), lithium ion transfer number (0.61) and electrochemical stability window (4.96 V). The assembled LiFePO4/Li battery displayed an initial discharge capacity of 146.10 mAh·g–1 at 0.5 C with capacity retention of 99.71% after 100 cycles and good rate performance. Our proposed strategy would provide a novel perspective for the design of high-performance paper-based separators for battery applications.

Keywords paper-based separators      lithium-ion batteries      acetylation      metal-organic framework coating     
Corresponding Author(s): Wei Wang   
Just Accepted Date: 27 June 2024   Issue Date: 10 September 2024
 Cite this article:   
Wei Wang,Xiangli Long,Liping Pang, et al. Improving the performance of paper-based separator for lithium-ion batteries application by cellulose fiber acetylation and metal-organic framework coating[J]. Front. Chem. Sci. Eng., 2024, 18(12): 144.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2495-0
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I12/144
Fig.1  Schematic illustration of the preparation of ZIF-8@ACP separator.
Fig.2  FTIR spectra of CP, ACP, ZIF-8@ACP separators and ZIF-8 nanoparticles.
Fig.3  XRD spectra of CP, ACP, ZIF-8@ACP separators and ZIF-8 nanoparticles.
Fig.4  SEM image of (a) CP, (b) ACP and (c, d) ZIF-8@ACP separators; (e) EDS-mapping image of Zn element in the ZIF-8@ACP separator; (f) SEM image of ZIF-8@ACP separator after electrolyte absorption.
Fig.5  Stress-strain curves of CP, ACP, ZIF-8@ACP and Celgard separators.
Fig.6  (a) Photographs and (b) area shrinkage percentages of ACP, ZIF-8@ACP and Celgard separators treated at different temperatures for 0.5 h; (c) DSC curves of ACP, ZIF-8@ACP and Celgard separators.
Fig.7  (a) Contact angles, (b) electrolyte uptake and (c) EIS plots of CP, ACP, ZIF-8@ACP and Celgard separators.
Fig.8  Nyquist plots of CP, ACP, ZIF-8@ACP and Celgard separators in assembled Li/separator/Li cells at room temperature.
Sample I0/10?5A IS/10?5A R0 RS tLi+
CP separator 1.75 1.18 508.13 531.11 0.35
ACP separator 0.68 0.55 1257.12 1421.65 0.53
ZIF-8@ACP separator 2.88 2.40 287.32 316.87 0.61
Celgard separator 1.86 1.58 518.56 560.34 0.31
Tab.1  Lithium ion transference number of CP, ACP, ZIF-8@ACP and Celgard separators at room temperature
Fig.9  LSV curves of CP, ACP, ZIF-8@ACP and Celgard separators at a scan rate of 5 mV·s–1.
Fig.10  (a) Initial charge-discharge curves; (b) cycle performance at 0.5 C; (c) rate capability at 0.2, 0.5, 1 and 2 C of CP, ACP, ZIF-8@ACP and Celgard separators; (d) capacity retention at 0.5 C and ionic conductivity of CF/ANF-20 separator [45], CS(10:1) separator [46], CFS/PPS-1/1 separator [47], ECM12 separator [44], ZIF-67@CNF separator [21], RCF-45 separator [48], PSF separator [18], and ZIF-8@ACP separator (this work).
1 Y Zhang , Z Wang . Review on cellulose paper-based electrodes for sustainable batteries with high energy densities. Frontiers of Chemical Science and Engineering, 2023, 17(8): 1010–1027
https://doi.org/10.1007/s11705-023-2307-y
2 J Sheng , S Tong , Z He , R Yang . Recent developments of cellulose materials for lithium-ion battery separators. Cellulose, 2017, 24(10): 4103–4122
https://doi.org/10.1007/s10570-017-1421-8
3 J Wang , J Yang , L Shen , Q Guo , H He , X Yao . Synergistic effects of plasticizer and 3D framework towards high-performance solid polymer electrolyte for room-temperature solid-state lithium batteries. ACS Applied Energy Materials, 2021, 4(4): 4129–4137
https://doi.org/10.1021/acsaem.1c00468
4 X Liu , M Qin , W Sun , D Zhang , B Jian , Z Sun , S Wang , X Li . Study on cellulose nanofibers/aramid fibers lithium-ion battery separators by the heterogeneous preparation method. International Journal of Biological Macromolecules, 2023, 225: 1476–1486
https://doi.org/10.1016/j.ijbiomac.2022.11.204
5 Z Wang , L Shen , S Deng , P Cui , X Yao . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium metal batteries. Advanced Materials, 2021, 33(25): 2100353
https://doi.org/10.1002/adma.202100353
6 F Xu , S Deng , Q Guo , D Zhou , X Yao . Quasi-ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2||Li batteries with rigid-flexible coupling interphase. Small Methods, 2021, 5(7): 2100262
https://doi.org/10.1002/smtd.202100262
7 Z Wang , Q Guo , R Jiang , S Deng , J Ma , P Cui , X Yao . Porous poly(vinylidene fluoride) supported three-dimensional poly(ethylene glycol) thin solid polymer electrolyte for flexible high temperature all-solid-state lithium metal batteries. Chemical Engineering Journal, 2022, 435(3): 135106
https://doi.org/10.1016/j.cej.2022.135106
8 C Song , C Gao , Q Peng , M Gibril , X Wang , S Wang , F Kong . A novel high-performance electrospun of polyimide/lignin nanofibers with unique electrochemical properties and its application as lithium-ion batteries separators. International Journal of Biological Macromolecules, 2023, 246: 125668
https://doi.org/10.1016/j.ijbiomac.2023.125668
9 H Pei , J Chen , H Liu , L Zhang , H Hui , Z Li , J Li , X Li . Ionic conductivity enhanced by crown ether bridges for lithium-ion battery separators. Applied Surface Science, 2023, 608: 155030
https://doi.org/10.1016/j.apsusc.2022.155030
10 G Feng , Z Li , L Mi , J Zheng , X Feng , W Chen . Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries. Journal of Power Sources, 2018, 376: 177–183
https://doi.org/10.1016/j.jpowsour.2017.11.086
11 N Wang , W Liu , H Liao , Z Li , Y Chen , G Zeng . Pure cellulose nanofiber separator with high ionic conductivity and cycling stability for lithium-ion batteries. International Journal of Biological Macromolecules, 2023, 250: 126078
https://doi.org/10.1016/j.ijbiomac.2023.126078
12 L Zhang , X Sun , Z Hu , C Yuan , C Chen . Rice paper as a separator membrane in lithium-ion batteries. Journal of Power Sources, 2012, 204: 149–154
https://doi.org/10.1016/j.jpowsour.2011.12.028
13 S Leijonmarck , A Cornell , G Lindbergh , L Wagberg . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(15): 4671–4677
https://doi.org/10.1039/c3ta01532g
14 L Zolin , M Destro , D Chaussy , N Penazzi , C Gerbaldi , D Beneventi . Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(28): 14894–14901
https://doi.org/10.1039/C5TA03716F
15 Y Wang , J Luo , L Chen , J Long , J Hu , L Meng . Effect of fibrillated fiber morphology on properties of paper-based separators for lithium-ion battery applications. Journal of Power Sources, 2021, 482: 228899
https://doi.org/10.1016/j.jpowsour.2020.228899
16 Z Wang , H Xiang , L Wang , R Xia , S Nie , C Chen , H Wang . A paper-supported inorganic composite separator for high-safety lithium-ion batteries. Journal of Membrane Science, 2018, 553: 10–16
https://doi.org/10.1016/j.memsci.2018.02.040
17 Z Zhang , M Zhou , J Yu , J Cai , Z Yang . Poly(vinylidene fluoride) modified commercial paper as a separator with enhanced thermal stability and electrolyte affinity for lithium-ion battery. Energy & Environmental Materials, 2021, 4(4): 664–670
https://doi.org/10.1002/eem2.12153
18 Z Li , W Wang , X Liang , J Wang , Y Xu , W Li . Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application. Journal of Energy Chemistry, 2023, 79(4): 92–100
https://doi.org/10.1016/j.jechem.2022.08.030
19 L Joseph , B M Jun , M Jang , C M Park , J C Muñoz-Senmache , A J Hernández-Maldonado , A Heyden , M Yu , Y Yoon . Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: a review. Chemical Engineering Journal, 2019, 369: 928–946
https://doi.org/10.1016/j.cej.2019.03.173
20 R Riccò , W Liang , S Li , J Gassensmith , F Caruso , C Doonan , P Falcaro . Metal-organic frameworks for cell and virus biology: a perspective. ACS Nano, 2018, 12(1): 13–23
https://doi.org/10.1021/acsnano.7b08056
21 X Sun , W Xu , X Zhang , T Lei , S Lee , Q Wu . ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. Journal of Energy Chemistry, 2021, 52(1): 170–180
https://doi.org/10.1016/j.jechem.2020.04.057
22 Q Huang , C Zhao , X Li . Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber. Cellulose, 2021, 28(5): 3097–3112
https://doi.org/10.1007/s10570-021-03720-1
23 S Zheng , X Zhu , Y Ouyang , K Chen , A Chen , X Fan , Y Miao , T Liu , Y Xie . Metal-organic framework decorated polymer nanofiber composite separator for physiochemically shielding polysulfides in stable lithium-sulfur batteries. Energy & Fuels, 2021, 35(23): 19154–19163
https://doi.org/10.1021/acs.energyfuels.1c02081
24 W Wang , Z Li , H Huang , W Li , J Wang . Facile design of novel nanocellulose-based gel polymer electrolyte for lithium-ion batteries application. Chemical Engineering Journal, 2022, 445: 136568
https://doi.org/10.1016/j.cej.2022.136568
25 E M Abd El-Monaem , A M Omer , R E Khalifa , A S Eltaweil . Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline. Journal of Colloid and Interface Science, 2022, 620: 333–345
https://doi.org/10.1016/j.jcis.2022.04.010
26 Z Li. Preparation and performance studies of acylated paper-based separators for lithium-ion battery application. Dissertation for the Master’s Degree. Nanning: Guangxi University, 2023
27 Y Hu , H Kazemian , S Rohani , Y Huang , Y Song . In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 2011, 47(47): 12694–12696
https://doi.org/10.1039/c1cc15525c
28 Z Yang , W Wang , Z Shao , H Zhu , Y Li , F Wang . The transparency and mechanical properties of cellulose acetate nanocomposites using cellulose nanowhiskers as fillers. Cellulose, 2013, 20(1): 159–168
https://doi.org/10.1007/s10570-012-9796-z
29 P Ajkidkarn , H Manuspiya . Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators. International Journal of Biological Macromolecules, 2020, 164: 3580–3588
https://doi.org/10.1016/j.ijbiomac.2020.08.234
30 Y Zhu , S Xiao , M Li , Z Chang , F Wang , J Gao , Y Wu . Natural macromolecule based carboxymethyl cellulose as a gel polymer electrolyte with adjustable porosity for lithium ion batteries. Journal of Power Sources, 2015, 288: 368–375
https://doi.org/10.1016/j.jpowsour.2015.04.117
31 M Li , X Wang , Y Yang , Z Chang , Y Wu , R Holze . A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. Journal of Membrane Science, 2015, 476: 112–118
https://doi.org/10.1016/j.memsci.2014.10.056
32 J Yang , X Zhao , W Zhang , K Ren , X Luo , J Cao , S Zheng , W Li , X Wu . “Pore-hopping” ion transport in cellulose-based separator towards high-performance sodium-ion batteries. Angewandte Chemie International Edition, 2023, 62(15): e202300258
https://doi.org/10.1002/anie.202300258
33 J Xing , J Li , W Fan , T Zhao , X Chen , H Li , Y Cui , Z Wei , Y Zhao . A review on nanofibrous separators towards enhanced mechanical properties for lithium-ion batteries. Composites Part B: Engineering, 2022, 243: 110105
https://doi.org/10.1016/j.compositesb.2022.110105
34 L Tan , Z Li , R Shi , F Quan , B Wang , X Ma , Q Ji , X Tian , Y Xia . Preparation and properties of an alginate-based fiber separator for lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12(34): 38175–38182
https://doi.org/10.1021/acsami.0c10630
35 X Zhan , J Zhang , M Liu , J Lu , Q Zhang , F Chen . Advanced polymer electrolyte with enhanced electrochemical performance for lithium-ion batteries: effect of nitrile-functionalized ionic liquid. ACS Applied Energy Materials, 2019, 2(3): 1685–1694
https://doi.org/10.1021/acsaem.8b01733
36 C Qin , W Wang , W Li , S Zhang . Reactive water vapor barrier coatings derived from cellulose undecenoyl esters for paper packaging. Coatings, 2020, 10(11): 1032
https://doi.org/10.3390/coatings10111032
37 M Kim , H Kim , K Lee , D Kim . Frosting characteristics on hydrophobic and superhydrophobic surfaces: a review. Energy Conversion and Management, 2017, 138: 1–11
https://doi.org/10.1016/j.enconman.2017.01.067
38 J Zhang , L Yue , Q Kong , Z Liu , X Zhou , C Zhang , Q Xu , B Zhang , G Ding , B Qin . et al.. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4(1): 3935
https://doi.org/10.1038/srep03935
39 P Minoofar , R Hernandez , S Chia , B Dunn , J Zink , A Franville . Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. Journal of the American Chemical Society, 2002, 124(48): 14388–14396
https://doi.org/10.1021/ja020817n
40 J Wang , C Wang , W Wang , W Li , J Lou . Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chemical Engineering Journal, 2022, 428(3): 132604
https://doi.org/10.1016/j.cej.2021.132604
41 J Zhang , Z Zhang , T Wu , X Luo . MOF particles (UiO-66 and UiO-66(Ce))/cellulose nanocomposite separators with regulating ion transport controllably for lithium battery. Journal of Electroanalytical Chemistry, 2023, 946: 117708
https://doi.org/10.1016/j.jelechem.2023.117708
42 X Song , X Xu , J Liu . Application of metal/covalent organic frameworks in separators for metal-ion batteries. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2023, 9(10): e202300246
https://doi.org/10.1002/cnma.202300246
43 X Zhao , W Wang , C Huang , L Luo , Z Deng , W Guo , J Xu , Z Meng . A novel cellulose membrane from cattail fibers as separator for Li-ion batteries. Cellulose, 2021, 28(14): 9309–9321
https://doi.org/10.1007/s10570-021-04110-3
44 J Sheng , T Chen , R Wang , Z Zhang , F Hua , R Yang . Ultra-light cellulose nanofibril membrane for lithium-ion batteries. Journal of Membrane Science, 2020, 595: 117550
https://doi.org/10.1016/j.memsci.2019.117550
45 S Zhang , J Luo , M Du , H Hui , Z Sun . Safety and cycling stability enhancement of cellulose paper-based lithium-ion battery separator by aramid nanofibers. European Polymer Journal, 2022, 171: 111222
https://doi.org/10.1016/j.eurpolymj.2022.111222
46 X Zeng , Y Liu , R He , T Li , Y Hu , C Wang , J Xu , L Wang , H Wang . Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose, 2022, 29(7): 3985–4000
https://doi.org/10.1007/s10570-022-04499-5
47 C Zhua , J Zhang , J Xua , X Yin , J Wu , S Chen , Z Zhu , L Wang , H Wang . Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydrate Polymers, 2020, 248: 116753
https://doi.org/10.1016/j.carbpol.2020.116753
48 Y Wang , X Liu , J Sheng , H Zhu , R Yang . Nanoporous regenerated cellulose separator for high-performance lithium ion batteries prepared by nonsolvent-induced phase separation. ACS Sustainable Chemistry & Engineering, 2021, 9(44): 14756–14765
https://doi.org/10.1021/acssuschemeng.1c04350
[1] FCE-24048-OF-WW_suppl_1 Download
[1] Guangxiang Zhang, Xin Chen, Yulin Ma, Hua Huo, Pengjian Zuo, Geping Yin, Yunzhi Gao, Chuankai Fu. Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2024, 18(8): 91-.
[2] Likai Zhu, Huaping Lin, Wenli Zhang, Qinhui Wang, Yefeng Zhou. Preparation of biomass-derived carbon loaded with MnO2 as lithium-ion battery anode for improving its reversible capacity and cycling performance[J]. Front. Chem. Sci. Eng., 2024, 18(1): 10-.
[3] Chenxi Xu, Shunli Li, Zhaohui Hou, Liming Yang, Wenbin Fu, Fujia Wang, Yafei Kuang, Haihui Zhou, Liang Chen. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance[J]. Front. Chem. Sci. Eng., 2023, 17(6): 679-690.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed