Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2024, Vol. 18 Issue (8) : 91    https://doi.org/10.1007/s11705-024-2444-y
Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries
Guangxiang Zhang1,2, Xin Chen1,2, Yulin Ma1,2, Hua Huo1,2, Pengjian Zuo1,2, Geping Yin1,2, Yunzhi Gao1,2(), Chuankai Fu1,2()
1. State Key Laboratory of Space Power-Sources, Harbin Institute of Technology, Harbin 150001, China
2. MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(2048 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the rapid iteration and update of wearable flexible devices, high-energy-density flexible lithium-ion batteries are rapidly thriving. Flexibility, energy density, and safety are all important indicators for flexible lithium-ion batteries, which can be determined jointly by material selection and structural design. Here, recent progress on high-energy-density electrode materials and flexible structure designs are discussed. Commercialized electrode materials and the next-generation high-energy-density electrode materials are analyzed in detail. The electrolytes with high safety and excellent flexibility are classified and discussed. The strategies to increase the mass loading of active materials on the electrodes by designing the current collector and electrode structure are discussed with keys of representative works. And the novel configuration structures to enhance the flexibility of batteries are displayed. In the end, it is pointed out that it is necessary to quantify the comprehensive performance of flexible lithium-ion batteries and simultaneously enhance the energy density, flexibility, and safety of batteries for the development of the next-generation high-energy-density flexible lithium-ion batteries.

Keywords lithium-ion batteries      flexibility      high energy density      safety     
Corresponding Author(s): Yunzhi Gao,Chuankai Fu   
Just Accepted Date: 19 April 2024   Issue Date: 28 June 2024
 Cite this article:   
Guangxiang Zhang,Xin Chen,Yulin Ma, et al. Recent advances and practical challenges of high-energy-density flexible lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2024, 18(8): 91.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-024-2444-y
https://academic.hep.com.cn/fcse/EN/Y2024/V18/I8/91
Fig.1  Timeline of FLIBs. (1) Segmented FLIBs. Reprinted with per mission from Ref. [1], copyright 2021, Wiley. (2) Ultra-thin FLIBs. Reprinted with permission from Ref. [22], copyright 2012, American Chemical Society. (3) Metal serpentine FLIBs. Reprinted with permission from Ref. [23], copyright 2013, Springer Nature. (4) Wire-shaped FLIBs. Reprinted with permission from Ref. [24], copyright 2014, Wiley. (5) Bamboo-shaped FLIBs. Reprinted with permission from Ref. [25], copyright 2016, Wiley. (6) Spine-like FLIBs. Reprinted with permission from Ref. [26], copyright 2018, Wiley. (7) DNA spiral-like FLIBs. Reprinted with permission from Ref. [27], copyright 2022, Elsevier. (8) Overlapping FLIBs. Reprinted with permission from Ref. [28], copyright 2023, Wiley.
Fig.2  Strategies for improving the safety, energy density, and flexibility of FLIBs.
CathodeAnodeEnergy densityFlexibility/retentionRef.
LiNi0.5Mn1.5O4Graphite226 Wh·kg–1 (total device)Bending[39]
LiMn2O4(LMO)Li4Ti5O12(LTO)NAStretching[40]
LCOGraphite4.8 Wh·L–1 (total device)Bending, 6000 cycles/93%[41]
LFPLTO@C125.5 Wh·L–1 (total device)Bending, 10000 times[42]
V2O5Graphene oxide389 Wh·kg–1 (two electrodes)Bending, 50 cycles/92.3%[43]
Tab.1  The performance of some flexible batteries with inorganic cathode materials
Fig.3  Advanced cathode materials for FLIBs. (a) The structure of FLIBs with LFP@CNF cathode. Reprinted with permission from Ref. [37], copyright 2020, Elsevier. (b) Cycling life of the Mxene@CNF/Li||LFP@CNF full cell. Reprinted with permission from Ref. [37], copyright 2020, Elsevier. (c) Carbonyl position change process. Reprinted with permission from Ref. [46], copyright 2023, Wiley. (d) The charging/discharging curves of o-TT and TT organic cathode. Reprinted with permission from Ref. [46], copyright 2023, Wiley.
Fig.4  Advanced anode materials for FLIBs. (a) Preparation of Li-Sn alloy. Reprinted with permission from Ref. [55], copyright 2021, Wiley. (b) Pouch battery with Li-Sn alloy. Reprinted with permission from Ref. [55], copyright 2021, Wiley. (c) Strategies of protecting Li anode. Reprinted with permission from Ref. [58], copyright 2019, Royal Society of Chemistry; Ref. [59], copyright 2019, Wiley; Ref. [60], copyright 2021, Wiley. (d) Preparation of VGAs@Si@CNFs anode. Reprinted with permission from Ref. [63], copyright 2022, Wiley. (e) Electrochemical performance of VGAs@Si@CNFs anode; (f) flexible pouch battery with VGAs@Si@CNFs anode. Reprinted with permission from Ref. [63], copyright 2022, Wiley.
Fig.5  Design strategies of flexible electrolytes.
Fig.6  Design strategies for polymer electrolytes. (a) SEM images before and after PEO/lithium salts infiltration into the porous film. Reprinted with permission from Ref. [83], copyright 2019, Springer Nature. (b) Simulation model of Li+ transport in the z-aligned PEO system. Reprinted with permission from Ref. [83], copyright 2019, Springer Nature. (c) Crosslinking process of self-healing solid polymer electrolyte. Reprinted with permission from Ref. [86], copyright 2019, Wiley. (d) Pouch battery with the self-healing solid polymer electrolyte. Reprinted with permission from Ref. [86], copyright 2019, Wiley. (e) Schematic of the intermolecular hydrogen binding effect between PVDF-HFP and PEO in the PHPG polymer. Reprinted with permission from Ref. [89], copyright 2018, Wiley. (f) Cycling life of the flexible electrolyte under flat, curling, and folding state at 2 C. Reprinted with permission from Ref. [89], copyright 2018, Wiley.
Fig.7  Design strategies of flexible electrodes.
Fig.8  Design strategies of current collectors for FLIBs. (a) SEM images of the patterned Al and Cu foil. Reprinted with permission from Ref. [97], copyright 2014, American Chemical Society. (b) Ragone plot of the charging rate performance. Reprinted with permission from Ref. [97], copyright 2014, American Chemical Society. (c) The schematic synthesis process of the N-doped porous CC materials (CC-FeD). Reprinted with permission from Ref. [103], copyright 2016, Elsevier. (d) Cycling life of the CC-FeD//CC-LCO all-FLIB at 1.0 mA·cm–2. Reprinted with permission from Ref. [103], copyright 2016, Elsevier. (e) Cycling performance of the FLIB with modified CC anode at different folding numbers. Reprinted with permission from Ref. [104], copyright 2018, Royal Society of Chemistry. (f) Rate performance of the LTO-CMF battery. Reprinted with permission from Ref. [109], copyright 2018, Royal Society of Chemistry. (g) Qualitative proof of insensitivity of the LTO-CMF battery toward folding. Reprinted with permission from Ref. [109], copyright 2018, Royal Society of Chemistry.
StructureCathodeAnodeEnergy densityFlexibility/retentionRef.
Wire-typeLMOLTO27 Wh·kg–1 (two electrodes)Bending, 1000 times/97%[24]
Wire-typeLMOCNT-Si242 Wh·kg–1 (active materials)Bending[121]
Wire-typeLCOLTO215 Wh·L–1 (full battery)Bending[122]
Sheet-typeLCOLTO108 Wh·kg–1 (total device)Bending, 50 times[107]
Sheet-typeLFPGraphite188 Wh·kg–1 (full battery)Bending[123]
Sheet-typeLCOGraphite275 Wh·L–1 (total device)Folding, 130°, 45000 times[124]
Tab.2  The energy density and flexibility of reported wire-type and sheet-type FLIBs
Fig.9  Flexible separators.
Fig.10  Flexibility evaluation methods and safety improvement strategies for FLIBs. (a) Description of the bending state of the pouch cell. Reprinted with permission from Ref. [135], copyright 2021, Wiley. (b) Charge-discharge performance of the LCO/Li coin cells using the PM/PP separators with a 5?μm thick PM layer at various temperatures. Reprinted with permission from Ref. [151], copyright 2020, Elsevier. (c) Cycling performance at 0.5?C of the LCO/Li coin cells with the PM/PP or bare PP separators at 25?°C. Reprinted with permission from Ref. [151], copyright 2020, Elsevier. (d) Schematic illustration of smart thermal responsive behavior in cell and the corresponding free radical polymerization mechanism under thermal abuse conditions. Reprinted with permission from Ref. [31], copyright 2021, Wiley. (e) Charging/discharging process of pouch battery with smart thermal responsive material at 150 °C. Reprinted with permission from Ref. [31], copyright 2021, Wiley.
Fig.11  Correlation of energy density, flexibility, and safety of FLIBs.
1 J Chang , Q Huang , Y Gao , Z Zheng . Pathways of developing high-energy-density flexible lithium batteries. Advanced Materials, 2021, 33(46): 2004419
https://doi.org/10.1002/adma.202004419
2 M Wang , Y Luo , T Wang , C Wan , L Pan , S Pan , K He , A Neo , X Chen . Artificial skin perception. Advanced Materials, 2021, 33(19): 2003014
https://doi.org/10.1002/adma.202003014
3 G Zhou , F Li , H M Cheng . Progress in flexible lithium batteries and future prospects. Energy & Environmental Science, 2014, 7(4): 1307–1338
https://doi.org/10.1039/C3EE43182G
4 S H Kim , N Y Kim , U J Choe , J M Kim , Y G Lee , S Y Lee . Ultrahigh-energy-density flexible lithium-metal full cells based on conductive fibrous skeletons. Advanced Energy Materials, 2021, 11(24): 2100531
https://doi.org/10.1002/aenm.202100531
5 Z Wang , W Zhang , X Li , L Gao . Recent progress in flexible energy storage materials for lithium-ion batteries and electrochemical capacitors: a review. Journal of Materials Research, 2016, 31(12): 1648–1664
https://doi.org/10.1557/jmr.2016.195
6 A Alahmed , E C Sabir . Textile based electrodes for flexible lithium-ion batteries: new updates. Current Nanoscience, 2022, 18(6): 659–667
https://doi.org/10.2174/1573413717666211208143652
7 L Zeng , L Qiu , H M Cheng . Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 2019, 23: 434–438
https://doi.org/10.1016/j.ensm.2019.04.019
8 L Deng , T Wei , J Liu , L Zhan , W Chen , J Cao . Recent developments of carbon-based anode materials for flexible lithium-ion batteries. Crystals, 2022, 12(9): 1279
https://doi.org/10.3390/cryst12091279
9 X Zhang . Thermal analysis of a cylindrical lithium-ion battery. Electrochimica Acta, 2011, 56(3): 1246–1255
https://doi.org/10.1016/j.electacta.2010.10.054
10 J Deng , I Smith , C Bae , P Rairigh , T Miller , B Surampudi . Communication-impact behaviors of pouch and prismatic battery modules. Journal of the Electrochemical Society, 2021, 168(2): 020520
https://doi.org/10.1149/1945-7111/abe16c
11 A E Ostfeld , A M Gaikwad , Y Khan , A C Arias . High-performance flexible energy storage and harvesting system for wearable electronics. Scientific Reports, 2016, 6(1): 26122
https://doi.org/10.1038/srep26122
12 C Xie , Y Guo , Z Zheng . Pushing the limit of flexible batteries. CCS Chemistry, 2023, 5(3): 531–543
https://doi.org/10.31635/ccschem.023.202202635
13 K K Fu , J Cheng , T Li , L Hu . Flexible batteries: from mechanics to devices. ACS Energy Letters, 2016, 1(5): 1065–1079
https://doi.org/10.1021/acsenergylett.6b00401
14 G Liang , F Mo , Q Yang , Z Huang , X Li , D Wang , Z Liu , H Li , Q Zhang , C Zhi . Commencing an acidic battery based on a copper anode with ultrafast proton-regulated kinetics and superior dendrite-free property. Advanced Materials, 2019, 31(52): 1905873
https://doi.org/10.1002/adma.201905873
15 X Lu , J Cheng , D Zhou , Y Chen , H Jiang , Y Lu , D Zhang , D Kong , P K Chu , H Y Yang . et al.. Highly flexible multilayer MXene hollow carbon nanofibers confined with Fe3C particles for high-performance lithium-ion batteries. Chemical Engineering Journal, 2023, 478(15): 147366
https://doi.org/10.1016/j.cej.2023.147366
16 H Li , Z Tang , Z Liu , C Zhi . Evaluating flexibility and wearability of flexible energy storage devices. Joule, 2019, 3(3): 613–619
https://doi.org/10.1016/j.joule.2019.01.013
17 L Mao , Q Meng , A Ahmad , Z Wei . Mechanical analyses and structural design requirements for flexible energy storage devices. Advanced Energy Materials, 2017, 7(23): 1700535
https://doi.org/10.1002/aenm.201700535
18 S Zheng , D Shi , T Sun , L Zhang , W Zhang , Y Li , Z Guo , Z Tao , J Chen . Hydrogen bond networks stabilized high-capacity organic cathode for lithium-ion batteries. Angewandte Chemie International Edition, 2023, 62(9): e202217710
https://doi.org/10.1002/anie.202217710
19 M Ge , C Cao , G M Biesold , C D Sewell , S M Hao , J Huang , W Zhang , Y Lai , Z Lin . Recent advances in silicon-based electrodes: from fundamental research toward practical applications. Advanced Materials, 2021, 33(16): 2004577
https://doi.org/10.1002/adma.202004577
20 H Nagata , J Akimoto , K Kataoka . Influence of compositing conditions for Si-composite negative electrodes in sulfide-type all-solid-state lithium-ion batteries. New Journal of Chemistry, 2023, 47(18): 8479–8483
https://doi.org/10.1039/D3NJ00765K
21 J Shang , W Yu , L Wang , C Xie , H Xu , W Wang , Q Huang , Z Zheng . Metallic glass-fiber fabrics: a new type of flexible, super-lightweight, and 3D current collector for lithium batteries. Advanced Materials, 2023, 35(26): 2211748
https://doi.org/10.1002/adma.202211748
22 M Koo , K I Park , S H Lee , M Suh , D Y Jeon , J W Choi , K Kang , K J Lee . Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Letters, 2012, 12(9): 4810–4816
https://doi.org/10.1021/nl302254v
23 S Xu , Y Zhang , J Cho , J Lee , X Huang , L Jia , J A Fan , Y Su , J Su , H Zhang . et al.. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4(1): 1543
https://doi.org/10.1038/ncomms2553
24 J Ren , Y Zhang , W Bai , X Chen , Z Zhang , X Fang , W Weng , Y Wang , H Peng . Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angewandte Chemie International Edition, 2014, 53(30): 7864–7869
https://doi.org/10.1002/anie.201402388
25 Q C Liu , T Liu , D P Liu , Z J Li , X B Zhang , Y Zhang . A flexible and wearable lithium-oxygen battery with record energy density achieved by the interlaced architecture inspired by bamboo slips. Advanced Materials, 2016, 28(38): 8413–8418
https://doi.org/10.1002/adma.201602800
26 G Qian , B Zhu , X Liao , H Zhai , A Srinivasan , N J Fritz , Q Cheng , M Ning , B Qie , Y Li . et al.. Bioinspired, spine-like, flexible, rechargeable lithium-ion batteries with high energy density. Advanced Materials, 2018, 30(12): 1704947
https://doi.org/10.1002/adma.201704947
27 Q Meng , C Kang , J Zhu , X Xiao , Y Ma , H Huo , P Zuo , C Du , S Lou , G Yin . DNA helix structure inspired flexible lithium-ion batteries with high spiral deformability and long-lived cyclic stability. Nano Letters, 2022, 22(13): 5553–5560
https://doi.org/10.1021/acs.nanolett.2c01820
28 Y Bao , H Liu , Z Zhao , X Ma , X Y Zhang , G Liu , W L Song . Toward flexible embodied energy: scale-inspired overlapping lithium-ion batteries with high-energy-density and variable stiffness. Advanced Functional Materials, 2023, 33(37): 2301581
https://doi.org/10.1002/adfm.202301581
29 Y Wang , F Chen , Z Liu , Z Tang , Q Yang , Y Zhao , S Du , Q Chen , C Zhi . A highly elastic and reversibly stretchable all polymer supercapacitor. Angewandte Chemie International Edition, 2019, 58(44): 15707–15711
https://doi.org/10.1002/anie.201908985
30 C Xu , Z Fan , M Zhang , P Wang , H Wang , C Jin , Y Peng , F Jiang , X Feng , M Ouyang . A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell Reports. Physical Science, 2023, 4(12): 101705
https://doi.org/10.1016/j.xcrp.2023.101705
31 Q Zhou , S Dong , Z Lv , G Xu , L Huang , Q Wang , Z Cui , G Cui . A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Advanced Energy Materials, 2020, 10(6): 1903441
https://doi.org/10.1002/aenm.201903441
32 R Deng , T He . Flexible solid-state lithium-ion batteries: materials and structures. Energies, 2023, 16(12): 4549
https://doi.org/10.3390/en16124549
33 B Kim , S H Yang , J H Seo , Y C Kang . Inducing an amorphous phase in polymer plastic crystal electrolyte for effective ion transportation in lithium metal batteries. Advanced Functional Materials, 2023, 34(7): 2310957
34 X Wang , X Lu , B Liu , D Chen , Y Tong , G Shen . Flexible energy storage devices: design consideration and recent progress. Advanced Materials, 2014, 26(28): 4763–4782
https://doi.org/10.1002/adma.201400910
35 S Zhang , Y Wang , H He , F Huo , Y Lu , X Zhang , K Dong . A new era of precise liquid regulation: quasi-liquid. Green Energy & Environment, 2017, 2(4): 329–330
https://doi.org/10.1016/j.gee.2017.09.001
36 M Cai , Y Dong , M Xie , W Dong , C Dong , P Dai , H Zhang , X Wang , X Sun , S Zhang . et al.. Stalling oxygen evolution in high-voltage cathodes by lanthurization. Nature Energy, 2023, 8(2): 159–168
https://doi.org/10.1038/s41560-022-01179-3
37 C Y Wang , Z J Zheng , Y Q Feng , H Ye , F F Cao , Z P Guo . Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74: 104817
https://doi.org/10.1016/j.nanoen.2020.104817
38 N Aliahmad , P K Biswas , H Dalir , M Agarwal . Synthesis of V2O5/single-walled carbon nanotubes integrated into nanostructured composites as cathode materials in high performance lithium-ion batteries. Energies, 2022, 15(2): 552
https://doi.org/10.3390/en15020552
39 S J Cho , K H Choi , J T Yoo , J H Kim , Y H Lee , S J Chun , S B Park , D H Choi , Q Wu , S Y Lee . et al.. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Advanced Functional Materials, 2015, 38(25): 6029–6040
https://doi.org/10.1002/adfm.201502833
40 W Weng , Q Sun , Y Zhang , S He , Q Wu , J Deng , X Fang , G Guan , J Ren , H Peng . A gum-like lithium-ion battery based on a novel arched structure. Advanced Materials, 2015, 27(8): 1363–1369
https://doi.org/10.1002/adma.201405127
41 M Kammoun , S Berg , H Ardebili . Flexible thin-film battery based on graphene-oxide embedded in solid polymer electrolyte. Nanoscale, 2015, 7(41): 17516–17522
https://doi.org/10.1039/C5NR04339E
42 S Zheng , Z S Wu , F Zhou , X Wang , J Ma , C Liu , Y B He , X Bao . All-solid-state planar integrated lithium-ion micro-batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51: 613–620
https://doi.org/10.1016/j.nanoen.2018.07.009
43 J Cui , S Yao , W G Chong , J Wu , M Ihsan-Ul-Haq , L Ma , M Zhao , Y Wang , J K Kim . Ultrafast Li+ diffusion kinetics of 2D oxidized phosphorus for quasi-solid-state bendable batteries with exceptional energy densities. Chemistry of Materials, 2019, 31(11): 4113–4123
https://doi.org/10.1021/acs.chemmater.9b00861
44 J Xu , X Cai , S Cai , Y Shao , C Hu , S Lu , S Ding . High-energy lithium-ion batteries: recent progress and a promising future in applications. Energy & Environmental Materials, 2023, 6(5): e12450
https://doi.org/10.1002/eem2.12450
45 D Xu , M Liang , S Qi , W Sun , L P Lv , F H Du , B Wang , S Chen , Y Wang , Y Yu . The progress and prospect of tunable organic molecules for organic lithium-ion batteries. ACS Nano, 2021, 15(1): 47–80
https://doi.org/10.1021/acsnano.0c05896
46 H Park , Y Shuku , J Lee , K Lee , M D Joo , B K An , K Awaga , P S Young , K J Eon . Isomeric triptycene triquinones as universal cathode materials for high energy alkali metal batteries. Batteries & Supercaps, 2023, 6(3): e202200497
https://doi.org/10.1002/batt.202200497
47 H Chen , M Armand , G Demailly , F Dolhem , P Poizot , J M Tarascon . From biomass to a renewable LiXC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem, 2008, 1(4): 348–355
https://doi.org/10.1002/cssc.200700161
48 K Li , J Yu , Z Si , B Gao , H Wang , Y Wang . W H, Wang Y. One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450: 138052
https://doi.org/10.1016/j.cej.2022.138052
49 Y Lu , Q Zhang , L Li , Z Niu , J Chen . Design strategies toward enhancing the performance of organic electrode materials in metal-ion batteries. Chem, 2018, 4(12): 2786–2813
https://doi.org/10.1016/j.chempr.2018.09.005
50 F Zhao , X Zhao , B Peng , F Gan , M Yao , W Tan , J Dong , Q Zhang . Polyimide-derived carbon nanofiber membranes as anodes for high-performance flexible lithium-ion batteries. Chinese Chemical Letters, 2018, 29(11): 1692–1697
https://doi.org/10.1016/j.cclet.2017.12.015
51 X Wang , B Liu , X Hou , Q Wang , W Li , D Chen , G Shen . Ultralong-life and high-rate web-like Li4Ti5O12 anode for high-performance flexible lithium-ion batteries. Nano Research, 2014, 7(7): 1073–1082
https://doi.org/10.1007/s12274-014-0470-7
52 P Li , H Kim , J Ming , H-G Jung , I Belharouak , Y K Sun . Quasi-compensatory effect in emerging anode-free lithium batteries. eScience, 2021, 1(1): 3–12
53 Y Zhang , L Yi , J Zhang , X Wang , X Hu , W Wei , H Wang . Advances in flexible lithium metal batteries. Science China Materials, 2022, 65(8): 2035–2059
https://doi.org/10.1007/s40843-022-2100-6
54 X Zhang , Y Yang , Z Zhou . Towards practical lithium-metal anodes. Chemical Society Reviews, 2020, 49(10): 3040–3071
https://doi.org/10.1039/C9CS00838A
55 J Gao , C Chen , Q Dong , J Dai , Y Yao , T Li , A Rundlett , R Wang , C Wang , L Hu . Stamping flexible Li alloy anodes. Advanced Materials, 2021, 33(11): 2005305
https://doi.org/10.1002/adma.202005305
56 P Qing , Z Wu , A Wang , S Huang , K Long , T Naren , D Chen , P He , H Huang , Y Chen . et al.. Highly reversible lithium metal anode enabled by 3D lipophilic-lithophytic dual-skeletons. Advanced Materials, 2023, 35(15): 2211203
https://doi.org/10.1002/adma.202211203
57 J M Kim , M H Engelhard , B Lu , Y Xu , S Tan , B E Matthews , S Tripathi , X Cao , C Niu , E Hu . et al.. High current-density-charging lithium metal batteries enabled by double-layer protected lithium metal anode. Advanced Functional Materials, 2022, 32(48): 2207172
https://doi.org/10.1002/adfm.202207172
58 J H Kim , Y H Lee , S J Cho , J G Gwon , H J Cho , M Jang , S Y Lee , S Y Lee . Nanomat Li-S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy & Environmental Science, 2019, 12(1): 177–186
https://doi.org/10.1039/C8EE01879K
59 T Liu , X L Feng , X Jin , M Z Shao , Y T Su , Y Zhang , X B Zhang . Protecting the lithium metal anode for a safe flexible lithium air battery in ambient air. Angewandte Chemie International Edition, 2019, 58(50): 18240–18245
https://doi.org/10.1002/anie.201911229
60 S Zhang , T Liang , D Wang , Y Xu , Y Cui , J Li , X Wang , X Xia , C Gu , J Tu . A stretchable and safe polymer electrolyte with a protecting-layer strategy for solid-state lithium metal batteries. Advanced Science, 2021, 8(15): 2003241
https://doi.org/10.1002/advs.202003241
61 H Wang , J Fu , C Wang , J Wang , A Yang , C Li , Q Sun , C Yi , H Li . A binder-free high silicon content flexible anode for Li-ion batteries. Energy & Environmental Science, 2020, 13(3): 848–858
https://doi.org/10.1039/C9EE02615K
62 R V Salvatierra , A R O Raji , S K Lee , Y Ji , L Li , J M Tour . Silicon nanowires and lithium cobalt oxide nanowires in graphene nanoribbon papers for full lithium ion battery. Advanced Energy Materials, 2016, 6(24): 1600918
https://doi.org/10.1002/aenm.201600918
63 Y Mu , M Han , B Wu , Y Wang , L Zi , J Li , Z Li , S Wang , J Wan , L Zeng . Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage. Advanced Science, 2022, 9(6): 2104685
https://doi.org/10.1002/advs.202104685
64 Y An , Y Tian , C Liu , S Xiong , J Feng , Y Qian . One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li-ion and MXene-based Li metal batteries. ACS Nano, 2022, 16(3): 4560–4577
https://doi.org/10.1021/acsnano.1c11098
65 S Huo , L Sheng , W Xue , L Wang , H Xu , H Zhang , X He . Challenges of polymer electrolyte with wide electrochemical window for high energy solid-state lithium batteries. InfoMat, 2023, 5(3): e12394
https://doi.org/10.1002/inf2.12394
66 R Fang , Y Li , N Wu , B Xu , Y Liu , A Manthiram , J B Goodenough . Ultra-thin single-particle-layer sodium beta-alumina-based composite polymer electrolyte membrane for sodium-metal batteries. Advanced Functional Materials, 2023, 33(6): 2211229
https://doi.org/10.1002/adfm.202211229
67 P Xu , Z Y Shuang , C Z Zhao , X Li , L Z Fan , A Chen , H Chen , E Kuzmina , E Karaseva , V Kolosnitsyn . et al.. A review of solid-state lithium metal batteries through in-situ solidification. Science China. Chemistry, 2024, 67(1): 7–86
https://doi.org/10.1007/s11426-023-1866-y
68 J M Son , S Oh , S H Bae , S Nam , K Oh . A pair of NiCo2O4 and V2O5 nanowires directly grown on carbon fabric for highly bendable lithium-ion batteries. Advanced Energy Materials, 2019, 9(18): 1900477
https://doi.org/10.1002/aenm.201900477
69 S H Ha , K H Shin , H W Park , Y J Lee . Flexible lithium-ion batteries with high areal capacity enabled by smart conductive textiles. Small, 2018, 14(43): 1703418
https://doi.org/10.1002/smll.201703418
70 H Chen , M Zheng , Sh Qian , H Y Ling , Z Wu , X Liu , C Yan , S Zhang . Functional additives for solid polymer electrolytes in flexible and high-energy-density solid-state lithium-ion batteries. Carbon Energy, 2021, 3(6): 929–956
https://doi.org/10.1002/cey2.146
71 R Fang , Y Liu , Y Li , A Manthiram , J B Goodenough . Achieving stable all-solid-state lithium-metal batteries by tuning the cathode-electrolyte interface and ionic/electronic transport within the cathode. Materials Today, 2023, 64: 52–60
https://doi.org/10.1016/j.mattod.2023.03.001
72 S J Yang , J K Hu , F N Jiang , H Yuan , H S Park , J Q Huang . Safer solid-state lithium metal batteries: mechanisms and strategies. InfoMat, 2023, 6(2): e12512
73 M K Tufail , A Ahmed , M Rafiq , N M Asif , A S S Shoaib , M Sohail , J M Sufyan , T Najam , R H Althomali , M M Rahman . Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chemical Record, 2023, 24(1): e202300155
74 Y N Liu , Z Xiao , W K Zhang , J Zhang , H Huang , Y P Gan , X P He , G G Kumar , Y Xia . Poly(m-phenylene isophthalamide)-reinforced polyethylene oxide composite electrolyte with high mechanical strength and thermostability for all-solid-state lithium metal batteries. Rare Metals, 2022, 41(11): 3762–3773
https://doi.org/10.1007/s12598-022-02065-3
75 S Wang , P Xiong , J Zhang , G Wang . Recent progress on flexible lithium metal batteries: composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29: 310–331
https://doi.org/10.1016/j.ensm.2020.04.032
76 Y Su , F Xu , X Zhang , Y Qiu , H Wang . Rational design of high-performance PEO/ceramic composite solid electrolytes for lithium metal batteries. Nano-Micro Letters, 2023, 15(1): 82
https://doi.org/10.1007/s40820-023-01055-z
77 R Fang , H Xu , B Xu , X Li , Y Li , J B Goodenough . Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Advanced Functional Materials, 2021, 31(2): 2001812
https://doi.org/10.1002/adfm.202001812
78 Y Xia , Q Wang , Y Liu , J Zhang , X Xia , H Huang , Y Gan , X He , Z Xiao , W Zhang . Three-dimensional polyimide nanofiber framework reinforced polymer electrolyte for all-solid-state lithium metal battery. Journal of Colloid and Interface Science, 2023, 638: 908–917
https://doi.org/10.1016/j.jcis.2023.01.138
79 H Xie , C Yang , K K Fu , Y Yao , F Jiang , E Hitz , B Liu , S Wang , L Hu . Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018, 8(18): 1703474
https://doi.org/10.1002/aenm.201703474
80 W Shen , K Li , Y Lv , T Xu , D Wei , Z Liu . Highly-safe and ultra-stable all-flexible gel polymer lithium ion batteries aiming for scalable applications. Advanced Energy Materials, 2020, 10(21): 1904281
https://doi.org/10.1002/aenm.201904281
81 Y Yusim , E Trevisanello , R H Ruess , F Richter , A Mayer , D Bresser , S Passerini , J Janek , A Henss . Evaluation and improvement of the stability of poly(ethylene oxide)-based solid-state batteries with high-voltage cathodes. Angewandte Chemie International Edition, 2023, 12(62): e202218316
https://doi.org/10.1002/anie.202218316
82 M L Thomas , H S Kan , S Nanbu , Y F Masahiro . Organic ionic plastic crystals: flexible solid electrolytes for lithium secondary batteries. Energy Advances, 2023, 2(6): 748–764
https://doi.org/10.1039/D3YA00078H
83 J Wan , J Xie , X Kong , Z Liu , K Liu , F Shi , A Pei , H Chen , W Chen , J Chen . et al.. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14(7): 705–711
https://doi.org/10.1038/s41565-019-0465-3
84 Z Wang , L Shen , S Deng , P Cui , X Yao . 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Advanced Materials, 2021, 33(25): 2100353
https://doi.org/10.1002/adma.202100353
85 J Lopez , D G Mackanic , Y Cui , Z Bao . Designing polymers for advanced battery chemistries. Nature Reviews. Materials, 2019, 4(5): 4312–4330
86 N Wu , Y R Shi , S Y Lang , J M Zhou , J Y Liang , W Wang , S J Tan , Y X Yin , R Wen , Y G Guo . Self-healable solid polymeric electrolytes for stable and flexible lithium metal batteries. Angewandte Chemie International Edition, 2019, 58(50): 18146–18149
https://doi.org/10.1002/anie.201910478
87 H J Ha , E H Kil , Y H Kwon , J Y Kim , C K Lee , S Y Lee . UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science, 2012, 5(4): 6491–6499
https://doi.org/10.1039/c2ee03025j
88 C K Ho , C S Ju , K S Hee , K Y Han , K J Young , L S Young . Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Advanced Functional Materials, 2014, 24(1): 44–52
https://doi.org/10.1002/adfm.201301345
89 G Chen , F Zhang , Z Zhou , J Li , Y Tang . A flexible dual-ion battery based on PVDF-HFP-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Advanced Energy Materials, 2018, 8(25): 1801219
https://doi.org/10.1002/aenm.201801219
90 X Chi , M Li , J Di , P Bai , L Song , X Wang , F Li , S Liang , J Xu , J Yu . A highly stable and flexible zeolite electrolyte solid-state Li-air battery. Nature, 2021, 592(7855): 551–557
https://doi.org/10.1038/s41586-021-03410-9
91 Q Wu , Y Yang , C Ma , Z Chen , Q Su , C Zhu , Y Gao , R Ma , C Li . Flexible nanocomposite polymer electrolyte based on UV-cured polyurethane acrylate for lithium metal batteries. ACS Sustainable Chemistry & Engineering, 2021, 9(16): 5631–5641
https://doi.org/10.1021/acssuschemeng.1c00467
92 K Pan , L Zhang , W Qian , X Wu , K Dong , H Zhang , S Zhang . A flexible ceramic/polymer hybrid solid electrolyte for solid state lithium metal batteries. Advanced Materials, 2020, 32(17): 2000399
https://doi.org/10.1002/adma.202000399
93 T Jiang , P He , G Wang , Y Shen , C W Nan , L Z Fan . Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Advanced Energy Materials, 2020, 10(12): 1903376
https://doi.org/10.1002/aenm.201903376
94 Y Liu , Y Li , J Sun , Z Du , X Hu , J Bi , C Liu , W Ai , Q Yan . Present and future of functionalized Cu current collectors for stabilizing lithium metal anodes. Nano Research Energy, 2023, 2: e9120048
https://doi.org/10.26599/NRE.2023.9120048
95 A Fu , C Wang , J Peng , M Su , F Pei , J Cui , X Fang , J F Li , N Zheng . Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009805
https://doi.org/10.1002/adfm.202009805
96 P Liu , Y Wang , H Hao , S Basu , X Feng , Y Xu , J A Boscoboinik , J Nanda , J Watt , D Mitlin . Stable potassium metal anodes with an all-aluminum current collector through improved electrolyte wetting. Advanced Materials, 2020, 32(49): 2002908
https://doi.org/10.1002/adma.202002908
97 M H Park , M Noh , S Lee , M Ko , S Chae , S Sim , S Choi , H Kim , H Nam , S Park . et al.. Flexible high-energy Li-ion batteries with fast-charging capability. Nano Letters, 2014, 14(7): 4083–4089
https://doi.org/10.1021/nl501597s
98 K Shang , J Gao , X Yin , Y Ding , Z Wen . An overview of flexible electrode materials/substrates for flexible electrochemical energy storage/conversion devices. European Journal of Inorganic Chemistry, 2021, 7(7): 606–619
https://doi.org/10.1002/ejic.202001024
99 N Li , Z Chen , W Ren , F Li , H M Cheng . Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(43): 17360–17365
https://doi.org/10.1073/pnas.1210072109
100 F Wu , X Gao , X Xu , Y Jiang , X Gao , R Yin , W Shi , W Liu , G Lu , X Cao . Carbon cloth for flexible aqueous zinc-ion batteries. ChemSusChem, 2020, 13(6): 1537–1545
https://doi.org/10.1002/cssc.201903006
101 H Shi , G Wen , Y Nie , G Zhang , H Duan . Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12(9): 5261–5285
https://doi.org/10.1039/C9NR09785F
102 K Kordek , L Jiang , K Fan , Z Zhu , L Xu , M Al-Mamun , Y Dou , S Chen , P Liu , H Yin , P Rutkowski , H Zhao . Two-step activated carbon cloth with oxygen-rich functional groups as a high-performance additive-free air electrode for flexible zinc-air batteries. Advanced Energy Materials, 2019, 9(4): 1802936
https://doi.org/10.1002/aenm.201802936
103 M S Balogun , W Qiu , F Lyu , Y Luo , H Meng , J Li , W Mai , L Mai , Y Tong . All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy, 2016, 26: 446–455
https://doi.org/10.1016/j.nanoen.2016.05.017
104 M S Balogun , H Yang , Y Luo , W Qiu , Y Huang , Z Q Liu , Y Tong . Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes. Energy & Environmental Science, 2018, 11(7): 1859–1869
https://doi.org/10.1039/C8EE00522B
105 S Zhu , J Sheng , Y Chen , J Ni , Y Li . Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8(5): nwaa261
https://doi.org/10.1093/nsr/nwaa261
106 B Fang , D Chang , Z Xu , C Gao . A review on graphene fibers: expectations, advances, and prospects. Advanced Materials, 2020, 32(5): 1902664
https://doi.org/10.1002/adma.201902664
107 L Hu , H Wu , M F La , Y Yang , Y Cui . Thin, flexible secondary Li-ion paper batteries. ACS Nano, 2010, 4(10): 5843–5848
https://doi.org/10.1021/nn1018158
108 J W Hu , Z P Wu , S W Zhong , W B Zhang , S Suresh , A Mehta , N Koratkar . Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon, 2015, 87: 292–298
https://doi.org/10.1016/j.carbon.2015.02.024
109 K Wang , S Luo , Y Wu , X He , F Zhao , J Wang , K Jiang , S Fan . Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Advanced Functional Materials, 2013, 23(7): 846–853
https://doi.org/10.1002/adfm.201202412
110 A M Gaikwad , B V Khau , G Davies , B Hertzberg , D A Steingart , A C Arias . A high areal capacity flexible lithium-ion battery with a strain-compliant design. Advanced Energy Materials, 2015, 5(3): 1401389
https://doi.org/10.1002/aenm.201401389
111 M Zhang , J Li , C Sun , Z Wang , Y Li , D Zhang . Durable flexible dual-layer and free-standing silicon/carbon composite anode for lithium-ion batteries. Journal of Alloys and Compounds, 2023, 932: 167687
https://doi.org/10.1016/j.jallcom.2022.167687
112 M S Balogun , M Yu , Y Huang , C Li , P Fang , Y Liu , X Lu , Y Tong . Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy, 2015, 11: 348–355
https://doi.org/10.1016/j.nanoen.2014.11.019
113 M S Balogun , Z Wu , Y Luo , W Qiu , X Fan , B Long , M Huang , P Liu , Y Tong . High power density nitridated hematite (α-Fe2O3) nanorods as anode for high-performance flexible lithium ion batteries. Journal of Power Sources, 2016, 308: 7–17
https://doi.org/10.1016/j.jpowsour.2016.01.043
114 C Hwang , W J Song , J G Han , S Bae , G Song , N S Choi , S Park , H K Song . Foldable electrode architectures based on silver-nanowire-wound or carbon-nanotube-webbed micrometer-scale fibers of polyethylene terephthalate mats for flexible lithium-ion batteries. Advanced Materials, 2018, 30(7): 1705445
https://doi.org/10.1002/adma.201705445
115 F Mo , G Liang , Z Huang , H Li , D Wang , C Zhi . An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties. Advanced Materials, 2020, 32(5): 1902151
https://doi.org/10.1002/adma.201902151
116 Z Fang , J Wang , H Wu , Q Li , S Fan , J Wang . Progress and challenges of flexible lithium ion batteries. Journal of Power Sources, 2020, 454: 227932
https://doi.org/10.1016/j.jpowsour.2020.227932
117 R Ke , L Du , B Han , H Xu , H Meng , H Zeng , Z Zheng , Y Deng . Biobased self-growing approach toward tailored, integrated high-performance flexible lithium-ion battery. Nano Letters, 2022, 22(23): 9327–9334
https://doi.org/10.1021/acs.nanolett.2c01240
118 W Qian , L Wang , X Mao , Y Yang , L Yan , S Zeng , K Zhao , Q Huang , M Liu , X Liu . et al.. Electronic synergy to boost the performance of NiCoP-NWs@FeCoP-NSs anodes for flexible lithium-ion batteries. Nanoscale, 2022, 14(23): 8398–8408
https://doi.org/10.1039/D2NR01787C
119 O Nyamaa , D H Seo , J S Lee , H M Jeong , S C Huh , J H Yang , E Dolgor , J P Noh . High electrochemical performance silicon thin-film free-standing electrodes based on bucky paper for flexible lithium-ion batteries. Materials, 2021, 14(8): 2053
https://doi.org/10.3390/ma14082053
120 Z Chen , G T Kim , Z Wang , D Bresser , B Qin , D Geiger , U Kaiser , X Wang , Z X Shen , S Passerini . 4-V flexible all-solid-state lithium polymer batteries. Nano Energy, 2019, 64: 103986
https://doi.org/10.1016/j.nanoen.2019.103986
121 D Wang , C Han , F Mo , Q Yang , Y Zhao , Q Li , G Liang , B Dong , C Zhi . Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28: 264–292
https://doi.org/10.1016/j.ensm.2020.03.006
122 Z Wu , K Liu , C Lv , S Zhong , Q Wang , T Liu , X Liu , Y Yin , Y Hu , D Wei . et al.. Ultrahigh-energy density lithium-ion cable battery based on the carbon-nanotube woven microfilms. Small, 2018, 14(22): 1800414
https://doi.org/10.1002/smll.201800414
123 S Leijonmarck , A Cornell , G Lindbergh , L Wågbergbc . Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4671–4677
https://doi.org/10.1039/c3ta01532g
124 X Liao , C Shi , T Wang , B Qie , Y Chen , P Yang , Q Cheng , H Zhai , M Chen , X Wang . et al.. High-energy-density foldable battery enabled by zigzag-like design. Advanced Energy Materials, 2019, 9(4): 1802998
https://doi.org/10.1002/aenm.201802998
125 S J Chun , E S Choi , E H Lee , J H Kim , S Y Lee , S Y Lee . Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22(32): 16618–16626
https://doi.org/10.1039/c2jm32415f
126 V Deimede , C Elmasides . Separators for lithium-ion batteries: a review on the production processes and recent developments. Energy Technology, 2015, 3(5): 453–468
https://doi.org/10.1002/ente.201402215
127 Y Zhu , K Cao , W Cheng , S Zeng , S Dou , W Chen , D Zhao , H Yu . A non-newtonian fluidic cellulose-modified glass microfiber separator for flexible lithium-ion batteries. EcoMat, 2021, 3(4): e12126
https://doi.org/10.1002/eom2.12126
128 A M Stephan , K S Nahm . Review on composite polymer electrolytes for lithium batteries. Polymer, 2006, 47(16): 5952–5964
https://doi.org/10.1016/j.polymer.2006.05.069
129 Q Xu , Q Kong , Z Liu , J Zhang , X Wang , R Liu , L Yue , G Cui . Polydopamine-coated cellulose micro fibrillated membrane as high performance lithium-ion battery separator. RSC Advances, 2014, 4(16): 7845–7850
https://doi.org/10.1039/c3ra45879b
130 T Liu , X Cheng , H Yu , H Zhu , N Peng , R Zheng , J Zhang , M Shui , Y Cui , J Shu . An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18: 68–91
https://doi.org/10.1016/j.ensm.2018.09.027
131 N Alias , A A Mohamad . Advances of aqueous rechargeable lithium-ion battery: a review. Journal of Power Sources, 2015, 274: 237–251
https://doi.org/10.1016/j.jpowsour.2014.10.009
132 W J Song , S Lee , G Song , S Park . Stretchable aqueous batteries: progress and prospects. ACS Energy Letters, 2019, 4(1): 177–186
https://doi.org/10.1021/acsenergylett.8b02053
133 X Zeng , J Hao , Z Wang , J Mao , Z Guo . Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20: 410–437
https://doi.org/10.1016/j.ensm.2019.04.022
134 J Peng , G J Snyder . A figure of merit for flexibility. Science, 2019, 36(6466): 690–691
https://doi.org/10.1126/science.aaz5704
135 W Liu , C Yi , L Li , S Liu , Q Gui , D Ba , Y Li , D Peng , J Liu . Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angewandte Chemie International Edition, 2021, 60(23): 12931–12940
https://doi.org/10.1002/anie.202101537
136 J Chang , Q Huang , Z Zheng . A figure of merit for flexible batteries. Joule, 2020, 7(4): 1346–1349
https://doi.org/10.1016/j.joule.2020.05.015
137 J Betz , G Bieker , P Meister , T Placke , M Winter , R Schmuch . Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced Energy Materials, 2019, 9(6): 1803170
https://doi.org/10.1002/aenm.201803170
138 J Zheng , S Myeong , W Cho , P Yan , J Xiao , C Wang , J Cho , J G Zhang . Li- and Mn-rich cathode materials: challenges to commercialization. Advanced Energy Materials, 2017, 7(6): 1601284
https://doi.org/10.1002/aenm.201601284
139 J He , C Lu , H Jiang , F Han , X Shi , J Wu , L Wang , T Chen , J Wang , Y Zhang . et al.. Scalable production of high-performing woven lithium-ion fiber batteries. Nature, 2021, 597(7874): 57–63
https://doi.org/10.1038/s41586-021-03772-0
140 B M Ghadi , M Yuan , H Ardebili . Stretchable fabric-based LiCoO2, electrode for lithium ion batteries. Extreme Mechanics Letters, 2019, 32: 32100532
https://doi.org/10.1016/j.eml.2019.100532
141 B M Ghadi , B Hekmatnia , Q Fu , H Ardebili . Stretchable fabric-based lithium-ion battery. Extreme Mechanics Letters, 2023, 6: 61102026
142 A Thakur , P Devi . Paper-based flexible devices for energy harvesting, conversion, and storage applications: a review. Nano Energy, 2022, 94: 106927
https://doi.org/10.1016/j.nanoen.2022.106927
143 P Lyu , X Liu , J Qu , J Zhao , Y Huo , Z Qu , Z Rao . Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 2020, 31: 195–220
https://doi.org/10.1016/j.ensm.2020.06.042
144 M H Parekh , B Li , M Palanisamy , T E Adams , V Tomar , V G Pol . In situ thermal runaway detection in lithium-ion batteries with an integrated internal sensor. ACS Applied Energy Materials, 2020, 3(8): 7997–8008
https://doi.org/10.1021/acsaem.0c01392
145 S J Yang , N Yao , F N Jiang , J Xie , S Y Sun , X Chen , H Yuan , X B Cheng , J Q Huang , Q Zhang . Thermally stable polymer-rich solid electrolyte interphase for safe lithium metal pouch cells. Angewandte Chemie International Edition, 2022, 61(51): e202214545
https://doi.org/10.1002/anie.202214545
146 Y Ye , L Y Chou , Y Liu , H Wang , L H Kwee , W Huang , J Wan , K Liu , G Zhou , Y Yang . et al.. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5(10): 786–793
https://doi.org/10.1038/s41560-020-00702-8
147 J Wang , Y Yamada , K Sodeyama , E Watanabe , K Takada , Y Tateyama , A Yamada . Fire-extinguishing organic electrolytes for safe batteries. Nature Energy, 2018, 3(1): 22–29
https://doi.org/10.1038/s41560-017-0033-8
148 H Yang , Q Li , C Guo , A Naveed , J Yang , Y Nuli , J Wang . Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54(33): 4132–4135
https://doi.org/10.1039/C7CC09942H
149 L Li , C Xu , R Chang , C Yang , C Jia , L Wang , J Song , Z Li , F Zhang , B Fang . et al.. Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules. Energy Storage Materials, 2021, 40: 329–336
https://doi.org/10.1016/j.ensm.2021.05.018
150 R Malik . Thermal runaway of lithium-ion batteries without internal short circuit. Joule, 2018, 2(10): 2047–2064
https://doi.org/10.1016/j.joule.2018.06.015
151 C Zhang , H Li , S Wang , Y Cao , H Yang , X Ai , F Zhong . A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries. Journal of Energy Chemistry, 2020, 44: 33–40
https://doi.org/10.1016/j.jechem.2019.09.017
[1] Wei Wang, Xiangli Long, Liping Pang, Dawei Shen, Qing Wang. Improving the performance of paper-based separator for lithium-ion batteries application by cellulose fiber acetylation and metal-organic framework coating[J]. Front. Chem. Sci. Eng., 2024, 18(12): 144-.
[2] Likai Zhu, Huaping Lin, Wenli Zhang, Qinhui Wang, Yefeng Zhou. Preparation of biomass-derived carbon loaded with MnO2 as lithium-ion battery anode for improving its reversible capacity and cycling performance[J]. Front. Chem. Sci. Eng., 2024, 18(1): 10-.
[3] Ying Zhang, Zhaohui Wang. Review on cellulose paper-based electrodes for sustainable batteries with high energy densities[J]. Front. Chem. Sci. Eng., 2023, 17(8): 1010-1027.
[4] Chenxi Xu, Shunli Li, Zhaohui Hou, Liming Yang, Wenbin Fu, Fujia Wang, Yafei Kuang, Haihui Zhou, Liang Chen. Direct pyrolysis to convert biomass to versatile 3D carbon nanotubes/mesoporous carbon architecture: conversion mechanism and electrochemical performance[J]. Front. Chem. Sci. Eng., 2023, 17(6): 679-690.
[5] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[6] Lijuan Qiu, Ruiyang Zhang, Ying Zhang, Chengjin Li, Qian Zhang, Ying Zhou. Superhydrophobic, mechanically flexible and recyclable reduced graphene oxide wrapped sponge for highly efficient oil/water separation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 390-399.
[7] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[8] Linghui Yu, Jiansong Miao, Yi Jin, Jerry Y.S. Lin. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017, 11(3): 346-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed