|
|
Metal-organic framework UiO-66 membranes |
Xinlei Liu( ) |
Catalysis Engineering, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands |
|
|
Abstract Metal-organic frameworks (MOFs) have emerged as a class of promising membrane materials. UiO-66 is a prototypical and stable MOF material with a number of analogues. In this article, we review five approaches for fabricating UiO-66 polycrystalline membranes including in situ synthesis, secondary synthesis, biphase synthesis, gas-phase deposition and electrochemical deposition, as well as their applications in gas separation, pervaporation, nanofiltration and ion separation. On this basis, we propose possible methods for scalable synthesis of UiO-66 membranes and their potential separation applications in the future.
|
Keywords
membrane
metal-organic framework
UiO-66
separation
|
Corresponding Author(s):
Xinlei Liu
|
Just Accepted Date: 18 September 2019
Online First Date: 19 November 2019
Issue Date: 24 March 2020
|
|
1 |
H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356(6343): eaab0530
|
2 |
M Shan, X Liu, X Wang, I Yarulina, B Seoane, F Kapteijn, J Gascon. Facile manufacture of porous organic framework membranes for precombustion CO2 capture. Science Advances, 2018, 4(9): eaau1698
|
3 |
X L Liu, Y S Li, G Q Zhu, Y J Ban, L Y Xu, W S Yang. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639
https://doi.org/10.1002/anie.201104383
|
4 |
P Bernardo, E Drioli, G Golemme. Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638–4663
https://doi.org/10.1021/ie8019032
|
5 |
K P Lee, T C Arnot, D Mattia. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 2011, 370(1): 1–22
https://doi.org/10.1016/j.memsci.2010.12.036
|
6 |
N Rangnekar, N Mittal, B Elyassi, J Caro, M Tsapatsis. Zeolite membranes—a review and comparison with MOFs. Chemical Society Reviews, 2015, 44(20): 7128–7154
https://doi.org/10.1039/C5CS00292C
|
7 |
H Furukawa, K E Cordova, M O’Keeffe, O M Yaghi. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149): 1230444
https://doi.org/10.1126/science.1230444
|
8 |
M Arnold, P Kortunov, D J Jones, Y Nedellec, J Kärger, J Caro. Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate. European Journal of Inorganic Chemistry, 2007, 2007(1): 60–64
https://doi.org/10.1002/ejic.200600698
|
9 |
J Gascon, S Aguado, F Kapteijn. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous and Mesoporous Materials, 2008, 113(1): 132–138
https://doi.org/10.1016/j.micromeso.2007.11.014
|
10 |
Y Liu, Z Ng, E A Khan, H K Jeong, C Ching, Z Lai. Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 2009, 118(1): 296–301
https://doi.org/10.1016/j.micromeso.2008.08.054
|
11 |
Y Yoo, Z Lai, H K Jeong. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous and Mesoporous Materials, 2009, 123(1): 100–106
https://doi.org/10.1016/j.micromeso.2009.03.036
|
12 |
H Guo, G Zhu, I J Hewitt, S Qiu. “Twin Copper Source” growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131(5): 1646–1647
https://doi.org/10.1021/ja8074874
|
13 |
R Ranjan, M Tsapatsis. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21(20): 4920–4924
https://doi.org/10.1021/cm902032y
|
14 |
H Bux, F Liang, Y Li, J Cravillon, M Wiebcke, J Caro. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. Journal of the American Chemical Society, 2009, 131(44): 16000–16001
https://doi.org/10.1021/ja907359t
|
15 |
S R Venna, M A Carreon. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2010, 132(1): 76–78
https://doi.org/10.1021/ja909263x
|
16 |
S Qiu, M Xue, G Zhu. Metal-organic framework membranes: From synthesis to separation application. Chemical Society Reviews, 2014, 43(16): 6116–6140
https://doi.org/10.1039/C4CS00159A
|
17 |
J Yao, H Wang. Zeolitic imidazolate framework composite membranes and thin films: Synthesis and applications. Chemical Society Reviews, 2014, 43(13): 4470–4493
https://doi.org/10.1039/C3CS60480B
|
18 |
X Li, Y Liu, J Wang, J Gascon, J Li, B Van der Bruggen. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144
https://doi.org/10.1039/C7CS00575J
|
19 |
Y Liu, Y Ban, W Yang. Microstructural engineering and architectural design of metal-organic framework membranes. Advanced Materials, 2017, 29(31): 1606949
https://doi.org/10.1002/adma.201606949
|
20 |
Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
https://doi.org/10.1126/science.1254227
|
21 |
Y Liu, J H Pan, N Wang, F Steinbach, X Liu, J Caro. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks. Angewandte Chemie International Edition, 2015, 54(10): 3028–3032
https://doi.org/10.1002/anie.201411550
|
22 |
J Duan, W Jin, S Kitagawa. Water-resistant porous coordination polymers for gas separation. Coordination Chemistry Reviews, 2017, 332: 48–74
https://doi.org/10.1016/j.ccr.2016.11.004
|
23 |
C Wang, X Liu, N Keser Demir, J P Chen, K Li. Applications of water stable metal-organic frameworks. Chemical Society Reviews, 2016, 45(18): 5107–5134
https://doi.org/10.1039/C6CS00362A
|
24 |
Y Bai, Y Dou, L H Xie, W Rutledge, J R Li, H C Zhou. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45(8): 2327–2367
https://doi.org/10.1039/C5CS00837A
|
25 |
R G Pearson. Hard and soft acids and bases. Journal of the American Chemical Society, 1963, 85(22): 3533–3539
https://doi.org/10.1021/ja00905a001
|
26 |
S Yuan, J S Qin, C T Lollar, H C Zhou. Stable metal-organic frameworks with group 4 metals: Current status and trends. ACS Central Science, 2018, 4(4): 440–450
https://doi.org/10.1021/acscentsci.8b00073
|
27 |
J H Cavka, S Jakobsen, U Olsbye, N Guillou, C Lamberti, S Bordiga, K P Lillerud. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008, 130(42): 13850–13851
https://doi.org/10.1021/ja8057953
|
28 |
X Liu, N K Demir, Z Wu, K Li. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 2015, 137(22): 6999–7002
https://doi.org/10.1021/jacs.5b02276
|
29 |
Z Hu, D Zhao. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal-organic frameworks and membrane materials. Dalton Transactions (Cambridge, England), 2015, 44(44): 19018–19040
https://doi.org/10.1039/C5DT03359D
|
30 |
R Xu, Z Wang, M Wang, Z Qiao, J Wang. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. Journal of Membrane Science, 2019, 573: 455–464
https://doi.org/10.1016/j.memsci.2018.12.027
|
31 |
J Shen, G Liu, K Huang, Q Li, K Guan, Y Li, W Jin. UiO-66-polyether block amide mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2016, 513: 155–165
https://doi.org/10.1016/j.memsci.2016.04.045
|
32 |
B Ghalei, K Sakurai, Y Kinoshita, K Wakimoto, P Isfahani Ali, Q Song, K Doitomi, S Furukawa, H Hirao, H Kusuda, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2(7): 17086
https://doi.org/10.1038/nenergy.2017.86
|
33 |
L Liu, X Xie, S Qi, R Li, X Zhang, X Song, C Gao. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. Journal of Membrane Science, 2019, 580: 101–109
https://doi.org/10.1016/j.memsci.2019.02.072
|
34 |
J Pang, Z Kang, R Wang, B Xu, X Nie, L Fan, F Zhang, X Du, S Feng, D Sun. Exploring the sandwich antibacterial membranes based on UiO-66/graphene oxide for forward osmosis performance. Carbon, 2019, 144: 321–332
https://doi.org/10.1016/j.carbon.2018.12.050
|
35 |
Y Wang, X Li, S Zhao, Z Fang, D Ng, C Xie, H Wang, Z Xie. Thin-film composite membrane with interlayer decorated metal-organic framework UiO-66 toward enhanced forward osmosis performance. Industrial & Engineering Chemistry Research, 2019, 58(1): 195–206
https://doi.org/10.1021/acs.iecr.8b04968
|
36 |
T Y Liu, H G Yuan, Y Y Liu, D Ren, Y C Su, X Wang. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity. ACS Nano, 2018, 12(9): 9253–9265
https://doi.org/10.1021/acsnano.8b03994
|
37 |
N Prasetya, B C Donose, B P Ladewig. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(34): 16390–16402
https://doi.org/10.1039/C8TA03553A
|
38 |
L Ma, F Svec, T Tan, Y Lv. Mixed matrix membrane based on cross-linked poly[(ethylene glycol) methacrylate] and metal-organic framework for efficient separation of carbon dioxide and methane. ACS Applied Nano Materials, 2018, 1(6): 2808–2818
https://doi.org/10.1021/acsanm.8b00459
|
39 |
M Jia, Y Feng, J Qiu, X F Zhang, J Yao. Amine-functionalized MOFs@GO as filler in mixed matrix membrane for selective CO2 separation. Separation and Purification Technology, 2019, 213: 63–69
https://doi.org/10.1016/j.seppur.2018.12.029
|
40 |
Z F Gao, Y Feng, D Ma, T S Chung. Vapor-phase crosslinked mixed matrix membranes with UiO-66-NH2 for organic solvent nanofiltration. Journal of Membrane Science, 2019, 574: 124–135
https://doi.org/10.1016/j.memsci.2018.12.064
|
41 |
Y Jiang, C Liu, J Caro, A Huang. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 2019, 274: 203–211
https://doi.org/10.1016/j.micromeso.2018.08.003
|
42 |
J Sánchez-Laínez, I Gracia-Guillén, B Zornoza, C Téllez, J Coronas. Thin supported MOF based mixed matrix membranes of Pebax® 1657 for biogas upgrade. New Journal of Chemistry, 2019, 43(1): 312–319
https://doi.org/10.1039/C8NJ04769C
|
43 |
X F Zhang, Y Feng, Z Wang, M Jia, J Yao. Fabrication of cellulose nanofibrils/UiO-66-NH2 composite membrane for CO2/N2 separation. Journal of Membrane Science, 2018, 568: 10–16
https://doi.org/10.1016/j.memsci.2018.09.055
|
44 |
C Satheeshkumar, H J Yu, H Park, M Kim, J S Lee, M Seo. Thiol-ene photopolymerization of vinyl-functionalized metal-organic frameworks towards mixed-matrix membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(44): 21961–21968
https://doi.org/10.1039/C8TA03803A
|
45 |
X Jiang, S Li, S He, Y Bai, L Shao. Interface manipulation of CO2-philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(31): 15064–15073
https://doi.org/10.1039/C8TA03872D
|
46 |
M Golpour, M Pakizeh. Preparation and characterization of new PA-MOF/PPSU-GO membrane for the separation of KHI from water. Chemical Engineering Journal, 2018, 345: 221–232
https://doi.org/10.1016/j.cej.2018.03.154
|
47 |
A M Marti, S R Venna, E A Roth, J T Culp, D P Hopkinson. Simple fabrication method for mixed matrix membranes with in situ MOF growth for gas separation. ACS Applied Materials & Interfaces, 2018, 10(29): 24784–24790
https://doi.org/10.1021/acsami.8b06592
|
48 |
M Z Ahmad, M Navarro, M Lhotka, B Zornoza, C Téllez, W M de Vos, N E Benes, N M Konnertz, T Visser, R Semino, et al. Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018, 558: 64–77
https://doi.org/10.1016/j.memsci.2018.04.040
|
49 |
M Mozafari, R Abedini, A Rahimpour. Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(26): 12380–12392
https://doi.org/10.1039/C8TA04806A
|
50 |
F Xiang, A M Marti, D P Hopkinson. Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation. Journal of Membrane Science, 2018, 556: 146–153
https://doi.org/10.1016/j.memsci.2018.03.081
|
51 |
Y M Xu, S Japip, T S Chung. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1–C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226
https://doi.org/10.1016/j.memsci.2017.12.001
|
52 |
H Molavi, A Shojaei, S A Mousavi. Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(6): 2775–2791
https://doi.org/10.1039/C7TA10480D
|
53 |
M Zamidi Ahmad, M Navarro, M Lhotka, B Zornoza, C Téllez, V Fila, J Coronas. Enhancement of CO2/CH4 separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474
https://doi.org/10.1016/j.seppur.2017.10.039
|
54 |
M A Rodrigues, J S Ribeiro, E S Costa, J L Miranda, H C Ferraz. Nanostructured membranes containing UiO-66 (Zr) and MIL-101 (Cr) for O2/N2 and CO2/N2 separation. Separation and Purification Technology, 2018, 192: 491–500
https://doi.org/10.1016/j.seppur.2017.10.024
|
55 |
P D Sutrisna, J Hou, M Y Zulkifli, H Li, Y Zhang, W Liang, M D’Alessandro Deanna, V Chen. Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(3): 918–931
https://doi.org/10.1039/C7TA07512J
|
56 |
S Liu, X Sang, L Wang, J Zhang, J Song, B Han. Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance. Electrochimica Acta, 2017, 257: 243–249
https://doi.org/10.1016/j.electacta.2017.10.084
|
57 |
A Donnadio, R Narducci, M Casciola, F Marmottini, R D’Amato, M Jazestani, H Chiniforoshan, F Costantino. Mixed membrane matrices based on Nafion/UiO-66/SO3H-UiO-66 nano-MOFs: Revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties. ACS Applied Materials & Interfaces, 2017, 9(48): 42239–42246
https://doi.org/10.1021/acsami.7b14847
|
58 |
M Liu, L Wang, X Zheng, Z Xie. Zirconium-based nanoscale metal-organic framework/poly(ε-caprolactone) mixed-matrix membranes as effective antimicrobials. ACS Applied Materials & Interfaces, 2017, 9(47): 41512–41520
https://doi.org/10.1021/acsami.7b15826
|
59 |
S Friebe, A Mundstock, K Volgmann, J Caro. On the better understanding of the surprisingly high performance of metal-organic framework-based mixed-matrix membranes using the example of UiO-66 and Matrimid. ACS Applied Materials & Interfaces, 2017, 9(47): 41553–41558
https://doi.org/10.1021/acsami.7b13037
|
60 |
K Guan, D Zhao, M Zhang, J Shen, G Zhou, G Liu, W Jin. 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance. Journal of Membrane Science, 2017, 542: 41–51
https://doi.org/10.1016/j.memsci.2017.07.055
|
61 |
X Cheng, X Jiang, Y Zhang, C H Lau, Z Xie, D Ng, S J D Smith, M R Hill, L Shao. Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Applied Materials & Interfaces, 2017, 9(44): 38877–38886
https://doi.org/10.1021/acsami.7b07373
|
62 |
B J Yao, L G Ding, F Li, J T Li, Q J Fu, Y Ban, A Guo, Y B Dong. Chemically cross-linked MOF membrane generated from imidazolium-based ionic liquid-decorated UiO-66 type NMOF and its application toward CO2 separation and conversion. ACS Applied Materials & Interfaces, 2017, 9(44): 38919–38930
https://doi.org/10.1021/acsami.7b12697
|
63 |
D Ma, G Han, S B Peh, S B Chen. Water-stable metal-organic framework UiO-66 for performance enhancement of forward osmosis membranes. Industrial & Engineering Chemistry Research, 2017, 56(44): 12773–12782
https://doi.org/10.1021/acs.iecr.7b03278
|
64 |
Z Song, F Qiu, E W Zaia, Z Wang, M Kunz, J Guo, M Brady, B Mi, J J Urban. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano Letters, 2017, 17(11): 6752–6758
https://doi.org/10.1021/acs.nanolett.7b02910
|
65 |
H Sun, B Tang, P Wu. Development of hybrid ultrafiltration membranes with improved water separation properties using modified superhydrophilic metal-organic framework nanoparticles. ACS Applied Materials & Interfaces, 2017, 9(25): 21473–21484
https://doi.org/10.1021/acsami.7b05504
|
66 |
Z Wang, H Ren, S Zhang, F Zhang, J Jin. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977
https://doi.org/10.1039/C7TA01773A
|
67 |
Y M Xu, T S Chung. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 2017, 531: 16–26
https://doi.org/10.1016/j.memsci.2017.02.041
|
68 |
D X Trinh, T P N Tran, T Taniike. Fabrication of new composite membrane filled with UiO-66 nanoparticles and its application to nanofiltration. Separation and Purification Technology, 2017, 177: 249–256
https://doi.org/10.1016/j.seppur.2017.01.004
|
69 |
J Ma, X Guo, Y Ying, D Liu, C Zhong. Composite ultrafiltration membrane tailored by MOF@GO with highly improved water purification performance. Chemical Engineering Journal, 2017, 313: 890–898
https://doi.org/10.1016/j.cej.2016.10.127
|
70 |
X Guo, D Liu, T Han, H Huang, Q Yang, C Zhong. Preparation of thin film nanocomposite membranes with surface modified MOF for high flux organic solvent nanofiltration. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(4): 1303–1312
https://doi.org/10.1002/aic.15508
|
71 |
S Castarlenas, C Téllez, J Coronas. Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017, 526: 205–211
https://doi.org/10.1016/j.memsci.2016.12.041
|
72 |
D Ma, S B Peh, G Han, S B Chen. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66: Toward enhancement of water flux and salt rejection. ACS Applied Materials & Interfaces, 2017, 9(8): 7523–7534
https://doi.org/10.1021/acsami.6b14223
|
73 |
M R Khdhayyer, E Esposito, A Fuoco, M Monteleone, L Giorno, J C Jansen, M P Attfield, P M Budd. Mixed matrix membranes based on UiO-66 MOFs in the polymer of intrinsic microporosity PIM-1. Separation and Purification Technology, 2017, 173: 304–313
https://doi.org/10.1016/j.seppur.2016.09.036
|
74 |
Z Hu, Z Kang, Y Qian, Y Peng, X Wang, C Chi, D Zhao. Mixed matrix membranes containing UiO-66(Hf)-(OH)2 metal-organic framework nanoparticles for efficient H2/CO2 separation. Industrial & Engineering Chemistry Research, 2016, 55(29): 7933–7940
https://doi.org/10.1021/acs.iecr.5b04568
|
75 |
B J Yao, W L Jiang, Y Dong, Z X Liu, Y B Dong. Post-synthetic polymerization of UiO-66-NH2 nanoparticles and polyurethane oligomer toward stand-alone membranes for dye removal and separation. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(30): 10565–10571
https://doi.org/10.1002/chem.201600817
|
76 |
S J D Smith, C H Lau, J I Mardel, M Kitchin, K Konstas, B P Ladewig, M R Hill. Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(27): 10627–10634
https://doi.org/10.1039/C6TA02603F
|
77 |
J C Moreton, M S Denny, S M Cohen. High MOF loading in mixed-matrix membranes utilizing styrene/butadiene copolymers. Chemical Communications, 2016, 52(100): 14376–14379
https://doi.org/10.1039/C6CC07329H
|
78 |
W L Jiang, L G Ding, B J Yao, J C Wang, G J Chen, Y A Li, J P Ma, J Ji, Y Dong, Y B Dong. A MOF-membrane based on the covalent bonding driven assembly of a NMOF with an organic oligomer and its application in membrane reactors. Chemical Communications, 2016, 52(93): 13564–13567
https://doi.org/10.1039/C6CC06427B
|
79 |
N C Su, D T Sun, C M Beavers, D K Britt, W L Queen, J J Urban. Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes. Energy & Environmental Science, 2016, 9(3): 922–931
https://doi.org/10.1039/C5EE02660A
|
80 |
M R Armstrong, K Y Y Arredondo, C Y Liu, J E Stevens, A Mayhob, B Shan, S Senthilnathan, C J Balzer, B Mu. UiO-66 MOF and poly(vinyl cinnamate) nanofiber composite membranes synthesized by a facile three-stage process. Industrial & Engineering Chemistry Research, 2015, 54(49): 12386–12392
https://doi.org/10.1021/acs.iecr.5b03334
|
81 |
M W Anjum, F Vermoortele, A L Khan, B Bueken, D E De Vos, I F J Vankelecom. Modulated UiO-66-based mixed-matrix membranes for CO2 separation. ACS Applied Materials & Interfaces, 2015, 7(45): 25193–25201
https://doi.org/10.1021/acsami.5b08964
|
82 |
S J D Smith, B P Ladewig, A J Hill, C H Lau, M R Hill. Post-synthetic Ti exchanged UiO-66 metal-organic frameworks that deliver exceptional gas permeability in mixed matrix membranes. Scientific Reports, 2015, 5(1): 7823
https://doi.org/10.1038/srep07823
|
83 |
O G Nik, X Y Chen, S Kaliaguine. Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2012, 413–414: 48–61
https://doi.org/10.1016/j.memsci.2012.04.003
|
84 |
Y Zhang, X Feng, H Li, Y Chen, J Zhao, S Wang, L Wang, B Wang. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie International Edition, 2015, 54(14): 4259–4263
https://doi.org/10.1002/anie.201500207
|
85 |
G Kickelbick, M P Feth, H Bertagnolli, M Puchberger, D Holzinger, S Gross. Formation of organically surface-modified metal oxo clusters from carboxylic acids and metal alkoxides: A mechanistic study. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2002, (20): 3892–3898
https://doi.org/10.1039/b207994a
|
86 |
X Liu, C Wang, B Wang, K Li. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311
https://doi.org/10.1002/adfm.201604311
|
87 |
K Huang, B Wang, S Guo, K Li. Micropatterned ultrathin MOF membranes with enhanced molecular sieving property. Angewandte Chemie International Edition, 2018, 57(42): 13892–13896
https://doi.org/10.1002/anie.201809872
|
88 |
H Zhang, J Hou, Y Hu, P Wang, R Ou, L Jiang, J Z Liu, B D Freeman, A J Hill, H Wang. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 2018, 4(2): eaaq0066
|
89 |
L Wan, C Zhou, K Xu, B Feng, A Huang. Synthesis of highly stable UiO-66-NH2 membranes with high ions rejection for seawater desalination. Microporous and Mesoporous Materials, 2017, 252: 207–213
https://doi.org/10.1016/j.micromeso.2017.06.025
|
90 |
F Wu, Y Cao, H Liu, X Zhang. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65
https://doi.org/10.1016/j.memsci.2018.03.090
|
91 |
M Miyamoto, K Hori, T Goshima, N Takaya, Y Oumi, S Uemiya. An organoselective zirconium-based metal-organic-framework UiO-66 membrane for pervaporation. European Journal of Inorganic Chemistry, 2017, 2017(14): 2094–2099
https://doi.org/10.1002/ejic.201700010
|
92 |
J Liu, N Canfield, W Liu. Preparation and characterization of a hydrophobic metal-organic framework membrane supported on a thin porous metal sheet. Industrial & Engineering Chemistry Research, 2016, 55(13): 3823–3832
https://doi.org/10.1021/acs.iecr.5b04739
|
93 |
F Wu, L Lin, H Liu, H Wang, J Qiu, X Zhang. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350
https://doi.org/10.1016/j.memsci.2017.09.047
|
94 |
X Wang, L Zhai, Y Wang, R Li, X Gu, Y D Yuan, Y Qian, Z Hu, D Zhao. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing. ACS Applied Materials & Interfaces, 2017, 9(43): 37848–37855
https://doi.org/10.1021/acsami.7b12750
|
95 |
S Friebe, B Geppert, F Steinbach, J Caro. Metal-organic framework UiO-66 layer: A highly oriented membrane with good selectivity and hydrogen permeance. ACS Applied Materials & Interfaces, 2017, 9(14): 12878–12885
https://doi.org/10.1021/acsami.7b02105
|
96 |
B Shan, J B James, M R Armstrong, E C Close, P A Letham, K Nikkhah, Y S Lin, B Mu. Influences of deprotonation and modulation on nucleation and growth of UiO-66: Intergrowth and orientation. Journal of Physical Chemistry C, 2018, 122(4): 2200–2206
https://doi.org/10.1021/acs.jpcc.7b11012
|
97 |
T Tsuruoka, S Furukawa, Y Takashima, K Yoshida, S Isoda, S Kitagawa. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie International Edition, 2009, 48(26): 4739–4743
https://doi.org/10.1002/anie.200901177
|
98 |
A Schaate, P Roy, A Godt, J Lippke, F Waltz, M Wiebcke, P Behrens. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(24): 6643–6651
https://doi.org/10.1002/chem.201003211
|
99 |
C Zhang, Y Zhao, Y Li, X Zhang, L Chi, G Lu. Defect-controlled preparation of UiO-66 metal-organic framework thin films with molecular sieving capability. Chemistry, an Asian Journal, 2016, 11(2): 207–210
https://doi.org/10.1002/asia.201501079
|
100 |
Y Zhang, J Zhao, K Wang, L Gao, M Meng, Y Yan. Green synthesis of acid-base bi-functional UiO-66-type metal-organic frameworks membranes supported on polyurethane foam for glucose conversion. ChemistrySelect, 2018, 3(32): 9378–9387
https://doi.org/10.1002/slct.201801893
|
101 |
H Liang, X Jiao, C Li, D Chen. Flexible self-supported metal–organic framework mats with exceptionally high porosity for enhanced separation and catalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 334–341
https://doi.org/10.1039/C7TA08210J
|
102 |
A X Lu, A M Ploskonka, T M Tovar, G W Peterson, J B DeCoste. Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502–14506
https://doi.org/10.1021/acs.iecr.7b04202
|
103 |
U Betke, S Proemmel, S Rannabauer, A Lieb, M Scheffler, F Scheffler. Silane functionalized open-celled ceramic foams as support structure in metal organic framework composite materials. Microporous and Mesoporous Materials, 2017, 239: 209–220
https://doi.org/10.1016/j.micromeso.2016.10.011
|
104 |
X Zhang, Y Zhao, S Mu, C Jiang, M Song, Q Fang, M Xue, S Qiu, B Chen. UiO-66-coated mesh membrane with underwater superoleophobicity for high-efficiency oil-water separation. ACS Applied Materials & Interfaces, 2018, 10(20): 17301–17308
https://doi.org/10.1021/acsami.8b05137
|
105 |
M Miyamoto, S Kohmura, H Iwatsuka, Y Oumi, S Uemiya. In situ solvothermal growth of highly oriented Zr-based metal organic framework UiO-66 film with monocrystalline layer. CrystEngComm, 2015, 17(18): 3422–3425
https://doi.org/10.1039/C5CE00462D
|
106 |
K B Lausund, O Nilsen. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition. Nature Communications, 2016, 7(1): 13578
https://doi.org/10.1038/ncomms13578
|
107 |
K B Lausund, V Petrovic, O Nilsen. All-gas-phase synthesis of amino-functionalized UiO-66 thin films. Dalton Transactions (Cambridge, England), 2017, 46(48): 16983–16992
https://doi.org/10.1039/C7DT03518G
|
108 |
E Virmani, J M Rotter, A Mähringer, T von Zons, A Godt, T Bein, S Wuttke, D D Medina. On-surface synthesis of highly oriented thin metal-organic framework films through vapor-assisted conversion. Journal of the American Chemical Society, 2018, 140(14): 4812–4819
https://doi.org/10.1021/jacs.7b08174
|
109 |
I Hod, W Bury, D M Karlin, P Deria, C W Kung, M J Katz, M So, B Klahr, D Jin, Y W Chung, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Advanced Materials, 2014, 26(36): 6295–6300
https://doi.org/10.1002/adma.201401940
|
110 |
I Stassen, M Styles, T Van Assche, N Campagnol, J Fransaer, J Denayer, J C Tan, P Falcaro, D De Vos, R Ameloot. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap. Chemistry of Materials, 2015, 27(5): 1801–1807
https://doi.org/10.1021/cm504806p
|
111 |
G Shangkum, P Chammingkwan, D Trinh, T Taniike. Design of a semi-continuous selective layer based on deposition of UiO-66 nanoparticles for nanofiltration. Membranes, 2018, 8(4): 129
https://doi.org/10.3390/membranes8040129
|
112 |
A Ghorbanpour, L D Huelsenbeck, D M Smilgies, G Giri. Oriented UiO-66 thin films through solution shearing. CrystEngComm, 2018, 20(3): 294–300
https://doi.org/10.1039/C7CE01801K
|
113 |
N Kosinov, J Gascon, F Kapteijn, E J M Hensen. Recent developments in zeolite membranes for gas separation. Journal of Membrane Science, 2016, 499: 65–79
https://doi.org/10.1016/j.memsci.2015.10.049
|
114 |
P Piszczek, A Radtke, A Grodzicki, A Wojtczak, J Chojnacki. The new type of [Zr6(m3-O)4(m3-OH)4] cluster core: Crystal structure and spectral characterization of [Zr6O4(OH)4(OOCR)12] (R=But, C(CH3)2Et). Polyhedron, 2007, 26(3): 679–685
https://doi.org/10.1016/j.poly.2006.08.025
|
115 |
H B Yao, Y X Yan, H L Gao, J Vaughn, I Pappas, J G Masters, S Yuan, S H Yu, L Pan. An investigation of zirconium(iv)–glycine(CP-2) hybrid complex in bovine serum albumin protein matrix under varying conditions. Journal of Materials Chemistry, 2011, 21(47): 19005–19012
https://doi.org/10.1039/c1jm13647j
|
116 |
A van der Drift. Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Research Reports, 1967, 22: 267–288
|
117 |
G Lu, C Cui, W Zhang, Y Liu, F Huo. Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. Chemistry, an Asian Journal, 2013, 8(1): 69–72
https://doi.org/10.1002/asia.201200754
|
118 |
V Miikkulainen, M Leskelä, M Ritala, R L Puurunen. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 2013, 113(2): 021301
https://doi.org/10.1063/1.4757907
|
119 |
X Ma, P Kumar, N Mittal, A Khlyustova, P Daoutidis, K A Mkhoyan, M Tsapatsis. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science, 2018, 361(6406): 1008–1011
https://doi.org/10.1126/science.aat4123
|
120 |
I Stassen, M Styles, G Grenci, V Gorp Hans, W Vanderlinden, D Feyter Steven, P Falcaro, D D Vos, P Vereecken, R Ameloot. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nature Materials, 2015, 15(3): 304–310
https://doi.org/10.1038/nmat4509
|
121 |
W Li, P Su, Z Li, Z Xu, F Wang, H Ou, J Zhang, G Zhang, E Zeng. Ultrathin metal-organic framework membrane production by gel-vapour deposition. Nature Communications, 2017, 8(1): 406
https://doi.org/10.1038/s41467-017-00544-1
|
122 |
H Lin, Q Zhu, D Shu, D Lin, J Xu, X Huang, W Shi, X Xi, J Wang, L Gao. Growth of environmentally stable transition metal selenide films. Nature Materials, 2019, 18(6): 602–607
https://doi.org/10.1038/s41563-019-0321-8
|
123 |
P Falcaro, R Ricco, C M Doherty, K Liang, A J Hill, M J Styles. MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43(16): 5513–5560
https://doi.org/10.1039/C4CS00089G
|
124 |
R Ameloot, L Stappers, J Fransaer, L Alaerts, B F Sels, D E De Vos. Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials, 2009, 21(13): 2580–2582
https://doi.org/10.1021/cm900069f
|
125 |
M Li, M Dincă. Reductive electrosynthesis of crystalline metal-organic frameworks. Journal of the American Chemical Society, 2011, 133(33): 12926–12929
https://doi.org/10.1021/ja2041546
|
126 |
W Wu, Z Li, Y Chen, W Li. Polydopamine-modified metal-organic framework membrane with enhanced selectivity for carbon capture. Environmental Science & Technology, 2019, 53(7): 3764–3772
https://doi.org/10.1021/acs.est.9b00408
|
127 |
S Devautour-Vinot, C Martineau, S Diaby, M Ben-Yahia, S Miller, C Serre, P Horcajada, D Cunha, F Taulelle, G Maurin. Caffeine confinement into a series of functionalized porous zirconium MOFs: A joint experimental/modeling exploration. Journal of Physical Chemistry C, 2013, 117(22): 11694–11704
https://doi.org/10.1021/jp402916y
|
128 |
L Valenzano, B Civalleri, S Chavan, S Bordiga, M H Nilsen, S Jakobsen, K P Lillerud, C Lamberti. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chemistry of Materials, 2011, 23(7): 1700–1718
https://doi.org/10.1021/cm1022882
|
129 |
H Wu, Y S Chua, V Krungleviciute, M Tyagi, P Chen, T Yildirim, W Zhou. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. Journal of the American Chemical Society, 2013, 135(28): 10525–10532
https://doi.org/10.1021/ja404514r
|
130 |
C A Trickett, K J Gagnon, S Lee, F Gándara, H B Bürgi, O M Yaghi. Definitive molecular level characterization of defects in UiO-66 crystals. Angewandte Chemie International Edition, 2015, 54(38): 11162–11167
https://doi.org/10.1002/anie.201505461
|
131 |
A J Brown, N A Brunelli, K Eum, F Rashidi, J R Johnson, W J Koros, C W Jones, S Nair. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science, 2014, 345(6192): 72–75
https://doi.org/10.1126/science.1251181
|
132 |
M R DeStefano, T Islamoglu, S J Garibay, J T Hupp, O K Farha. Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 2017, 29(3): 1357–1361
https://doi.org/10.1021/acs.chemmater.6b05115
|
133 |
Z Hu, Y Peng, Z Kang, Y Qian, D Zhao. A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorganic Chemistry, 2015, 54(10): 4862–4868
https://doi.org/10.1021/acs.inorgchem.5b00435
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|