Please wait a minute...
Frontiers of Electrical and Electronic Engineering

ISSN 2095-2732

ISSN 2095-2740(Online)

CN 10-1028/TM

Front Elect Electr Eng    2012, Vol. 7 Issue (3) : 308-311    https://doi.org/10.1007/s11460-012-0205-z
RESEARCH ARTICLE
New classes of sequence families with low correlation by using multiplicative and additive characters
Pinhui KE(), Shengyuan ZHANG
Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou 350007, China
 Download: PDF(92 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For an odd prime p, a new sequence family of period pm-1, size (M-1)pmr is proposed using multiplicative and additive characters. The upper bound for the maximum magnitude of nontrivial correlations of the sequence family is derived using well-known character sums. The upper bound is shown to be (r+1)pm+3, which meets the Welch bound asymptotically.

Keywords finite field      character sum      correlation      polyphase sequence      Welch bound     
Corresponding Author(s): KE Pinhui,Email:keph@fjnu.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Pinhui KE,Shengyuan ZHANG. New classes of sequence families with low correlation by using multiplicative and additive characters[J]. Front Elect Electr Eng, 2012, 7(3): 308-311.
 URL:  
https://academic.hep.com.cn/fee/EN/10.1007/s11460-012-0205-z
https://academic.hep.com.cn/fee/EN/Y2012/V7/I3/308
period LalphabetRmaxfamily size
F ?r [3]PM2L+5(M+1)(L+1)2
Fr[3]PM3L+4(M-1)2(L-1)2+(M-1)
Fs[3]pm-1M2L+1+6(M-1)L2+?M-12?
L [8]pm-1M3L+1+5(M-1)2(L-2)2+M(M-1)2
V [4]pm-1M3L+1+1(M-1)?(L2+1)
U [4]pm-1M3L+1+5M(M-1)(L-1)2+M-1
Fok(ρ)[9]pm-1P1+pm+(2ρ-1)e2pme
Ωr[5]Pp(p-1)(r+1)p+2(p-2)?pr
Γr(this paper)pm-1Mp(r+1)pm+3(M-1)?pmr
Tab.1  Comparison of several classes of sequence families with low correlation and large family size
1 Golomb S W, Gong G. Signal Design for Good Correlation — For Wireless Communication, Cryptography and Radar. Cambridge, U.K.: Cambridge University Press, 2005
2 Helleseth T, Kumar P V, Pless V S, Huffman W C. Sequences with low correlation. In: Handbook of Coding Theory . Amsterdam, Netherlands: Elsevier, 1998
3 Han Y K, Yang K. New M-ary sequence families with low correlation and large size. IEEE Transactions on Information Theory , 2009, 55(4): 1815-1823
doi: 10.1109/TIT.2009.2013040
4 Yu N Y, Gong G. New construction of M-ary sequence families with low correlation from the structure of Sidelnikov sequences. IEEE Transactions on Information Theory , 2010, 56(8): 4061-4070
doi: 10.1109/TIT.2010.2050793
5 Schmidt K U. Sequence families with low correlation derived from multiplicative and additive characters. IEEE Transactions on Information Theory , 2011, 57(4): 2291-2294
doi: 10.1109/TIT.2011.2111110
6 Niederreiter H, Winterhof A. Incomplete character sums and polynomial interpolation of the discrete logarithm. Finite Fields and Their Applications , 2002, 8(2): 184-192
doi: 10.1006/ffta.2001.0334
7 Lidl R, Niederreiter H. Finite Fields (Encyclopedia of Mathematics and Its Applications. vol. 20). 2nd ed. New York, NY: Cambridge University Press, 1997
8 Kim Y S, Chung J S, No J S, Chung H. New families of M-ary sequences with low correlation constructed from Sidelnikov sequences. IEEE Transactions on Information Theory , 2008, 54(8): 3768-3774
doi: 10.1109/TIT.2008.926428
9 Zhou Z C, Tang X H. New nonbinary sequence families with low correlation, large size, and large linear span. Applied Mathematics Letters , 2011, 24(7): 1105-1110
doi: 10.1016/j.aml.2011.01.033
[1] Xudong ZHAO, Peng LIU, Jiafeng LIU, Xianglong TANG. Feature extraction for classification of different weather conditions[J]. Front Elect Electr Eng Chin, 2011, 6(2): 339-346.
[2] Wangshu ZHANG, Rui JIANG, Yong CHEN, . Comparative study of network-based prioritization of protein domains associated with human complex diseases[J]. Front. Electr. Electron. Eng., 2010, 5(2): 107-118.
[3] Yi LIANG, Mengdao XING, Zheng BAO, Long ZHANG. High-speed ground moving target detection research using triangular modulation FMCW[J]. Front Elect Electr Eng Chin, 2009, 4(2): 127-133.
[4] OU Xiaojuan, ZHOU Wei. Multi-scale Kalman filters algorithm for GPS common-view observation data based on correlation structure of discrete wavelet coefficients[J]. Front. Electr. Electron. Eng., 2007, 2(3): 317-321.
[5] GUO Jie, LIU Yun, YE Zhi-hui, SONG Tie-cheng, SHEN Lian-feng. Separating cyclostationary signals from spectrally overlapping interference[J]. Front. Electr. Electron. Eng., 2006, 1(3): 307-312.
[6] CHEN Wei, YANG Yi-xian, NIU Xin-xin. Construction of optimized Boolean functions[J]. Front. Electr. Electron. Eng., 2006, 1(3): 277-282.
[7] WANG Zhen-li, ZHANG Xiong-wei, YANG Ji-bin, CHEN Gong. Study of a new fast adaptive filtering algorithm[J]. Front. Electr. Electron. Eng., 2006, 1(3): 334-339.
[8] KE Pin-hui, KE Pin-hui, CHANG Zu-ling, CHANG Zu-ling, WEN Qiao-yan, WEN Qiao-yan. Construction of generalized binary Bent sequences[J]. Front. Electr. Electron. Eng., 2006, 1(3): 340-344.
[9] LUO Jun, OU Zhi-jian, WANG Zuo-ying. Eigenvoice-based MAP adaptation within correlation subspace[J]. Front. Electr. Electron. Eng., 2006, 1(2): 130-134.
[10] HU Fei, WEN Hong, CHEN Hua-wei. New Family of Spreading Sequences for Quasi-Synchronous CDMA Systems[J]. Front. Electr. Electron. Eng., 2006, 1(1): 37-41.
[11] MA Hong-guang, HAN Chong-zhao. Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction[J]. Front. Electr. Electron. Eng., 2006, 1(1): 111-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed