Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front Earth Sci    0, Vol. Issue () : 103-109    https://doi.org/10.1007/s11707-011-0172-3
RESEARCH ARTICLE
Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing
Jin YANG, Bin CHEN()
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
 Download: PDF(259 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Low-carbon economy is becoming a new approach to optimize economic development, ensuring energy security and coping with climate change. As one of the important emission sources of greenhouse gases (GHG), the industrial sector should be prioritized in the development of low-carbon economy. In this study, the carbon emission from industrial energy use of Chongqing is accounted. On basis of industrial carbon emission (ICE) accounting, main factors responsible for industrial CO2 emission are identified and quantitatively analyzed using the Log-Mean Divisia Index method. The factors influenc- ing ICE include energy mix, energy intensity, industrial structure and industrial output. It is found that the industrial output is the main driving force of ICE. The energy structure performs as a negative factor in carbon emission growth. By means of decomposing the influenc- ing factors, several policy proposals were suggested for policy makers to build a low carbon city.

Keywords carbon emission      energy use      industrial sector      Chongqing     
Corresponding Author(s): CHEN Bin,Email:Chenb@bnu.edu.cn   
Issue Date: 05 March 2011
 Cite this article:   
Jin YANG,Bin CHEN. Using LMDI method to analyze the change of industrial CO2 emission from energy use in Chongqing[J]. Front Earth Sci, 0, (): 103-109.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-011-0172-3
https://academic.hep.com.cn/fesci/EN/Y0/V/I/103
Item2005200620072008
Industrial coal consumption/(104 ton)1631.171965.382373.462626.76
Coal for living consumption/(104 ton)295.40321.73321.48362.1
Industrial oil consumption/(104 tce)25.2342.7746.3743.33
Industrial nature gas consumption/(104 tce)344.87366.63436.09497.44
Industrial electricity consumption/(×109 kwh)203.06232.82281.31341.40
Tab.1  Industrial energy use in Chongqing from 2005 to 2008
Fig.1  Industrial CO emission from energy consumption
Fig.2  Proportion of industrial CO emissions from different types of energy consumption
Fig.3  Total ICEs and industrial carbon intensity of Chongqing
Time/aEnergy mixEnergy intensityIndustrial structureIndustrial outputTotal carbon emission
Annual changeCumulative changeAnnual changeCumulative changeAnnual changeCumulative changeAnnual changeCumulative changeAnnual changeCumulative change
2004-2005-600.25-600.24-100.76-100.76267.40267.401326.351326.35892.73892.73
2005-2006214.30-386.22-358.34-459.10-359.80-92.401390.742717.08886.631779.36
2006-2007341.05-45.16-1226.62-1685.72-223.21-315.622428.855145.941320.083099.44
2007-2008156.72111.56-1548.53-3234.25763.36447.752500.447646.371871.994971.43
Tab.2  Decomposition factors related incremental effect of carbon emissions
Fig.4  Changes in ICE of different influencing factors 2004-2008
Fig.5  Annual changes of CO emission influenced by each sector
1 Al-Ghandoor A, Phelan P E, Villalobos R, Jaber J O (2010). Energy and exergy utilizations of the U.S. manufacturing sector. Energy , 35(7): 3048–3065
doi: 10.1016/j.energy.2010.03.046
2 Ang B W (2004). Decomposition analysis for policy making in energy: Which is the preferred method? Energy Policy , 32(9): 1131–1139
doi: 10.1016/S0301-4215(03)00076-4
3 Ang B W (2005). The LMDI approach to decomposition analysis: A practical guide. Energy Policy , 33(7): 867–871
doi: 10.1016/j.enpol.2003.10.010
4 Bhattacharyya S C, Ussanarassamee A (2004). Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000. Energy Econ , 26(5): 765–781
doi: 10.1016/j.eneco.2004.04.035
5 Casler S D, Rose A (1998). Carbon dioxide emissions in the U.S. economy: A structural decomposition analysis. Environ Resour Econ , 11(3/4): 349–363
doi: 10.1023/A:1008224101980
6 Druckman A, Jackson T (2009). The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input–output model. Ecol Econ , 68(7): 2066–2077
doi: 10.1016/j.ecolecon.2009.01.013
7 Hoekstra R, van den Bergh J C J M (2003). Comparing structural decomposition analysis and index. Energy Econ , 25(1): 39–64
doi: 10.1016/S0140-9883(02)00059-2
8 IPCC (2006). IPCC guidelines for national greenhouse gas inventories. http://www.ipcc.ch/ipccreports/methodology-reports.htm
9 IPCC (2007). Summary for Policymakers of the Synthesis Report of the IPCC Fourth Assessment Report.Cambridge: Cambridge University Press, 2007
10 Lee K, Oh W (2006). Analysis of CO2 emissions in APEC countries: A time-series and a cross-sectional decomposition using the log mean Divisia method. Energy Policy , 34(17): 2779–2787
doi: 10.1016/j.enpol.2005.04.019
11 Li Y M, Fu J F (2010). Structural decomposition analysis on carbon emissions growth embodied in exports in China. China Population. Resources and Environment , 20(8): 53–57 (in Chinese)
12 Liu L C, Fan Y, Wu G, Wei Y M (2007). Using LMDI method to analyze the change of China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy Policy , 35(11): 5892–5900
doi: 10.1016/j.enpol.2007.07.010
13 Ma C, Stern D I (2008). China's changing energy intensity trend: A decomposition analysis. Energy Econ , 30(3): 1037–1053
doi: 10.1016/j.eneco.2007.05.005
14 Oh I, Wehrmeyer W, Mulugetta Y (2010). Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea. Energy Policy , 38(1): 364–377
doi: 10.1016/j.enpol.2009.09.027
15 Shrestha R M, Anandarajah G, Liyanage M H (2009). Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific. Energy Policy , 37(6): 2375–2384
doi: 10.1016/j.enpol.2009.01.032
16 Sovacool B K, Brown M A (2010). Twelve metropolitan carbon footprints: A preliminary comparative global assessment. Energy Policy , 38(9): 4856–4869
doi: 10.1016/j.enpol.2009.10.001
17 Wachsmann U, Wood R, Lenzen M, Schaeffer R (2009). Structural decomposition of energy use in Brazil from 1970 to 1996. Appl Energy , 86(4): 578–587
doi: 10.1016/j.apenergy.2008.08.003
18 Zha D L, Zhou D Q, Zhou P (2010). Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis. Energy Policy , 38: 3377–3383
doi: 10.1016/j.enpol.2010.02.011
19 Zhang M, Mu H L, Ning Y D, Song Y C (2009). Decomposition of energy-related CO2 emission over 1991-2006 in China. Ecol Econ , 68(7): 2122–2128
doi: 10.1016/j.ecolecon.2009.02.005
20 Zhao M, Tan L R, Zhang W G, Ji M H, Liu Y, Yu L Z (2010). Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method. Energy , 35(6): 2505–2510
doi: 10.1016/j.energy.2010.02.049
21 Zhao X, Long R Y (2010). The status and decomposition model of carbon emissions for Jiangsu Province. China Population. Resources and Environment , 20(7): 25–30 (in Chinese)
22 Zhou S Y, Chen H, Li S C (2010). Resources use and greenhouse gas emissions in urban economy: Ecological input-output modeling for Beijing 2002. Commun Nonlinear Sci Numer Simul , 15(10): 3201–3231
doi: 10.1016/j.cnsns.2009.11.026
[1] Yang YU, Yiming DU, Wei XU, Qi LIU. Research on carbon emissions embodied in China-Russia trade under the background of the Belt and Road[J]. Front. Earth Sci., 2023, 17(2): 576-588.
[2] Jingyu ZENG, Rongrong ZHANG, Jia TANG, Jingchen LIANG, Jinghan LI, Yue ZENG, Yefan LI, Qing ZHANG, Wei SHUI, Qianfeng WANG. Ecological sustainability assessment of the carbon footprint in Fujian Province, southeast China[J]. Front. Earth Sci., 2021, 15(1): 12-22.
[3] Xianzhe LI, Ping JIANG, Yan ZHANG, Weichun MA. Development of a stationary carbon emission inventory for Shanghai using pollution source census data[J]. Front. Earth Sci., 2016, 10(4): 691-706.
[4] Mengyao HAN, Xi JI. Alternative industrial carbon emissions benchmark based on input-output analysis[J]. Front. Earth Sci., 2016, 10(4): 731-739.
[5] Changjian WANG,Xiaolei ZHANG,Fei WANG,Jun LEI,Li ZHANG. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations[J]. Front. Earth Sci., 2015, 9(1): 65-76.
[6] Xi JI, Zhanming CHEN, Jinkai LI. Embodied energy consumption and carbon emissions evaluation for urban industrial structure optimization[J]. Front Earth Sci, 2014, 8(1): 32-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed