Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 637-641    https://doi.org/10.1007/s11707-015-0515-6
RESEARCH ARTICLE
Modeling of oil spill beaching along the coast of the Bohai Sea, China
Qing XU1,2,3, Yongcun CHENG3,4(), Bingqing LIU5, Yongliang WEI5
1. Key Laboratory of Coastal Disasters and Defense of Ministry of Education, Hohai University, Nanjing 210098, China
2. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
3. Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23529, USA
4. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
5. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
 Download: PDF(923 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

On June 4 and 17, 2011, two separate oil spill accidents occurred at platforms B and C of the Penglai 19-3 oilfield located in the Bohai Sea, China. Based on the initial oil spill locations detected from the first available Synthetic Aperture Radar (SAR) image acquired on June 11, 2011, we performed a numerical experiment to simulate the potential oil spill beaching area with the General NOAA Operational Modeling Environment (GNOME) model. The model was driven by ocean surface currents from an operational ocean model (Navy Coastal Ocean Model) and surface winds from operational scatterometer measurements (the Advanced Scatterometer). Under the forcing of wind and ocean currents, some of the oil spills reached land along the coast of Qinhuangdao within 12 days. The results also demonstrate that the ocean currents are likely to carry the remaining oil spills along the Bohai coast towards the northeast. The predicted oil spill beaching area was verified by reported in-situ measurements and former studies based on MODIS observations.

Keywords oil spill      Bohai Sea      trajectory      GNOME      SAR     
Corresponding Author(s): Yongcun CHENG   
Just Accepted Date: 29 May 2015   Online First Date: 30 June 2015    Issue Date: 30 October 2015
 Cite this article:   
Qing XU,Yongcun CHENG,Bingqing LIU, et al. Modeling of oil spill beaching along the coast of the Bohai Sea, China[J]. Front. Earth Sci., 2015, 9(4): 637-641.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0515-6
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/637
1 C J Beegle-Krause (2003). Advantages of separating the circulation model and trajectory model: GNOME trajectory model used with outside circulation models. Environment Canada Arctic and Marine Oil Spill Program Technical Seminar (AMOP) Proceedings, 26(2): 825–840
2 C J Beegle-Krause (2005). General NOAA oil modeling environment (GNOME): a new spill trajectory model. In: Proceedings of International Oil Spill Conference, 3277–3283
3 Y Cheng, X Li, Q Xu, O Garcia-Pineda, O B Andersen, W G Pichel (2011). SAR observation and model tracking of an oil spill event in coastal waters. Mar Pollut Bull, 62(2): 350–363
https://doi.org/10.1016/j.marpolbul.2010.10.005
4 Y Cheng, B Liu, X Li, F Nunziata, Q Xu, X Ding, M Migliaccio, W G Pichel (2014). Monitoring of oil spill trajectories with COSMO-SkyMed X-Band SAR images and model simulation. IEEE J Sel Topics Appl Earth Observ in Remote Sens, 7(7): 2895–2901
https://doi.org/10.1109/JSTARS.2014.2341574
5 M Farzingohar, Z I Zelina, M Yasemi (2011). Oil spill modeling of diesel and gasoline with GNOME around Rajaee Port of Bandar Abbas. Iran J Fish Sci, 10: 35–46
6 G Ferraro, S Meyer-Roux, O Muellenhoff, M Pavliha, J Svetak, D Tarchi, K Topouzelis (2009). Long term monitoring of oil spills in European seas. Int J Remote Sens, 30(3): 627–645
https://doi.org/10.1080/01431160802339464
7 O Garcia-Pineda, B Zimmer, M Howard, W G Pichel, X Li, I R MacDonald (2009). Using SAR image to delineate ocean oil slicks with a texture classifying neural network algorithm (TCNNA). Can J Rem Sens, 35(5): 411–421
https://doi.org/10.5589/m09-035
8 J Guo, X Liu, Q Xie (2013). Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem. Chin Sci Bull, 58(19): 2276–2281
https://doi.org/10.1007/s11434-012-5355-0
9 B Hackett, E Comerma, P Daniel, H Ichikawa (2009). Marine oil pollution prediction. Oceanography (Wash DC), 22(3): 168–175
https://doi.org/10.5670/oceanog.2009.75
10 C Hu, X Li, W G Pichel, F E Muller-Karger (2009). Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophys Res Lett, 36(1 L01604): L01604
https://doi.org/10.1029/2008GL036119
11 C Hu, F E Müller-Karger, C Taylor, D Myhre, B Murch, A L Odriozola, G Godoy (2003). MODIS detects oil spills in Lake Maracaibo, Venezuela. Eos Trans AGU, 84(33): 313–319
https://doi.org/10.1029/2003EO330002
12 X Li, C Li, Z Yang, W Pichel (2013). SAR imaging of ocean surface oil seep trajectories induced by near inertial oscillation. Remote Sens Environ, 130: 182–187
https://doi.org/10.1016/j.rse.2012.11.019
13 X Li, W Zheng, W G Pichel, C Z Zou, P Clemente-Colón (2007). Coastal karabatic winds imaged by SAR. Geophys Res Lett, 34(3), L03804,
https://doi.org/10.1029/2006GL028055
14 P Liu, X Li, J Qu, W Wang, C Zhao, W G Pichel (2011). Oil spill detection with fully polarimetric UAVSAR data. Mar Pollut Bull, 62(12): 2611–2618
https://doi.org/10.1016/j.marpolbul.2011.09.036
15 P J Martin, C N Barron, L F Smedstad, T J Campbell, A J Wallcraft, R C Rhodes, C Rowley, T L Townsend, S N Carroll (2009). User’s manual for the Navy Coastal Ocean Model (NCOM) version 4.0, NRL Report NRL/MR/732009-9151
16 M Migliaccio, A Gambardella, M Tranfaglia (2007). SAR polarimetry to observe oil spills. IEEE Trans Geosci Rem Sens, 45(2): 506–511
https://doi.org/10.1109/TGRS.2006.888097
17 M Migliaccio, F Nunziata, C E Brown, B Holt, X F Li, W Pichel, M Shimada (2012). Polarimetric synthetic aperture radar utilized to track oil spills. EOS, 16(93): 161–168
https://doi.org/10.1029/2012EO160001
18 R Remyalekshmi, A V Hegde (2013). Numerical modeling of oil spill movement along north-west coast of India using GNOME. International Journal of Ocean and Climate Systems, 4(1): 75–86
https://doi.org/10.1260/1759-3131.4.1.75
19 A H S Solberg, C Brekke, P O Husoy (2007). Oil spill detection in radarsat and envisat sar images. IEEE Trans Geosci Rem Sens, 45(3): 746–755
https://doi.org/10.1109/TGRS.2006.887019
20 P Sun, Z Gao, L Cao, X Wang, Q Zhou, Y Zhao, G Li (2011). Application of a step-by-step fingerprinting identification method on a spilled oil accident in the Bohai Sea area. J Ocean Univ China, 10(1): 35–41
https://doi.org/10.1007/s11802-011-1716-6
21 C Wackerman, P Clemente-Colon, W Pichel, X Li (2002). A two-scale model to predict C-band VV and HH normalized radar cross section values over the ocean. Can J Rem Sens, 28(3): 367–384
https://doi.org/10.5589/m02-044
22 C Wang, M Liao, X Li (2008). Ship detection in SAR image based on the alpha-stable distribution. Sensors, 8(8): 4948–4960
https://doi.org/10.3390/s8084948
23 Q Xu, X Li, Y Wei, Z Tang, Y Cheng, W G Pichel (2013). Satellite observations and modeling of oil spill trajectories in the Bohai Sea. Mar Pollut Bull, 71(1‒2): 107–116
https://doi.org/10.1016/j.marpolbul.2013.03.028
24 Q Xu, H Lin, X Li, J Zou, Q Zheng, W G Pichel (2010). Assessment of an analytical model for sea surface wind speed retrievel from space borne SAR. Int J Remote Sens, 31(4): 993–1008
https://doi.org/10.1016/j.marpolbul.2013.03.028
25 Q Xu, H Xi, Y Zhang (2010). Marine pollution in water, sediment and biota. In: E N Ahmed, ed. Impact, Monitoring and Management of Environmental Pollution. Hauppauge NY: Nova Science Pub Inc., 157–191
26 X Yang, X Li, Q Zheng, X Gu, W G Pichel, Z Li (2011). Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and Radarsat-1 SAR in offshore waters of the U.S. west coast. IEEE Geosci Remote Sens Lett, 8(1): 163–167
https://doi.org/10.1109/LGRS.2010.2053345
27 B Zhang, W Perrie, X Li, W G Pichel (2011). Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys Res Lett, doi: 10.1029/2011GL047013
[1] Menghan ZHANG, Mingjun MA, Jingying ZHANG, Mingzhuo ZHANG, Bo LI, Dehui DU. A novel spatio-temporal trajectory data-driven development approach for autonomous vehicles[J]. Front. Earth Sci., 2021, 15(3): 620-630.
[2] Shan LIU, Fengli ZHANG, Shiying WEI, Qingbo LIU, Na LIU, Yun SHAO, Steven J. BURIAN. Building damage mapping based on Touzi decomposition using quad-polarimetric ALOS PALSAR data[J]. Front. Earth Sci., 2020, 14(2): 401-412.
[3] Shiyong YAN, Ke SHI, Yi LI, Jinglong LIU, Hongfeng ZHAO. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Front. Earth Sci., 2020, 14(1): 1-12.
[4] Zhuokun PAN, Yueming HU, Guangxing WANG. Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping[J]. Front. Earth Sci., 2019, 13(3): 495-509.
[5] Xiaochen WANG, Yun SHAO, Fengli ZHANG, Wei TIAN. Comparison of C- and L-band simulated compact polarized SAR in oil spill detection[J]. Front. Earth Sci., 2019, 13(2): 351-360.
[6] Meinan ZHENG, Kazhong DENG, Hongdong FAN, Jilei HUANG. Monitoring and analysis of mining 3D deformation by multi-platform SAR images with the probability integral method[J]. Front. Earth Sci., 2019, 13(1): 169-179.
[7] Jia GAO, Lin MU, Xianwen BAO, Jun SONG, Yang DING. Drift analysis of MH370 debris in the southern Indian Ocean[J]. Front. Earth Sci., 2018, 12(3): 468-480.
[8] T. PERROU, A. GARIOUD, I. PARCHARIDIS. Use of Sentinel-1 imagery for flood management in a reservoir-regulated river basin[J]. Front. Earth Sci., 2018, 12(3): 506-520.
[9] Qing XU,Hongyuan ZHANG,Yongcun CHENG. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Front. Earth Sci., 2016, 10(2): 378-388.
[10] Xiliang LIU, Feng LU, Hengcai ZHANG, Peiyuan QIU. Intersection delay estimation from floating car data via principal curves: a case study on Beijing’s road network[J]. Front Earth Sci, 2013, 7(2): 206-216.
[11] Minyue ZHAO, Xiang LI. Deriving average delay of traffic flow around intersections from vehicle trajectory data[J]. Front Earth Sci, 2013, 7(1): 28-33.
[12] Handong WANG, Yang YUE, Qingquan LI. How many probe vehicles are enough for identifying traffic congestion?—a study from a streaming data perspective[J]. Front Earth Sci, 2013, 7(1): 34-42.
[13] Jing SUN, Xiang LI. A pyramid-based approach to visual exploration of a large volume of vehicle trajectory data[J]. Front Earth Sci, 2012, 6(4): 345-353.
[14] Xianrui XU, Xiaojie LI, Yujie HU, Zhongren PENG. A novel algorithm to identifying vehicle travel path in elevated road area based on GPS trajectory data[J]. Front Earth Sci, 2012, 6(4): 354-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed