Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (2) : 378-388    https://doi.org/10.1007/s11707-015-0528-1
RESEARCH ARTICLE
Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods
Qing XU1,2,3,Hongyuan ZHANG1,2,*(),Yongcun CHENG3
1. Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security, Hohai University, Nanjing 210098, China
2. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China
3. Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, VA 23508, USA
 Download: PDF(2118 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The massive Ulva (U.) prolifera bloom in the Yellow Sea was first observed and reported in summer of 2008. After that, the green tide event occurred every year and influenced coastal areas of Jiangsu and Shandong provinces of China. Satellite remote sensing plays an important role in monitoring the floating macroalgae. In this paper, U. prolifera patches are detected from quasi-synchronous satellite images with different spatial resolution, i.e., Aqua MODIS (Moderate Resolution Imaging Spectroradiometer), HJ-1A/B (China Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting), CCD (Charge-Coupled Device), Landsat 8 OLI (Operational Land Imager), and ENVISAT (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images. Two comparative experiments are performed to explore the U. prolifera monitoring abilities by different data using detection methods such as NDVI (Normalized Difference Vegetation Index) with different thresholds. Results demonstrate that spatial resolution is an important factor affecting the extracted area of the floating macroalgae. Due to the complexity of Case II sea water characteristics in the Yellow Sea, a fixed threshold NDVI method is not suitable for U. prolifera monitoring. A method with adaptive ability in time and space, e.g., the threshold selection method proposed by Otsu (1979), is needed here to obtain accurate information on the floating macroalgae.

Keywords Ulva prolifera      the Yellow Sea      MODIS      CCD      OLI      SAR      NDVI     
Corresponding Author(s): Hongyuan ZHANG   
Just Accepted Date: 12 August 2015   Issue Date: 05 April 2016
 Cite this article:   
Qing XU,Hongyuan ZHANG,Yongcun CHENG. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Front. Earth Sci., 2016, 10(2): 378-388.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0528-1
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I2/378
Date Time (UTC) Satellite/sensor Spatial resolution/m Swath/km
2013.6.24 5:20 Aqua/MODIS 250 2,330
2:12 HJ-1A/B/CCD 30 360
2:38 Landsat 8/OLI 30 185
2008.6.28 5:05 Aqua/MODIS 250 2,330
1:55 ENVISAT/ASAR 30 100
Tab.1  Basic information of satellite images
Fig.1  Aqua MODIS RGB (1, 2, 1 bands) images of the U. prolifera bloom in the Yellow Sea acquired at 5:05 UTC on 28 June 2008 (a) and 5:20 UTC on 24 June 2013 (b). The floating macroalgae are shown as green patches (marked with red circles) on the images.
Fig.2  Sub-images of three quasi-synchronous optical satellite images of U. prolifera bloom in the northern Yellow Sea. (a) Aqua MODIS image acquired at 5:20 UTC on 24 June 2013; (b) HJ-1A/B CCD image acquired at 2:12 UTC on 24 June 2013; (c) Landsat 8 OLI image acquired at 2:38 UTC on 24 June 2013. The 6 sub-regions A?F are marked with red polygons.
Fig.3  Sub-images of U. prolifera bloom in Qingdao coastal areas: (a) Aqua MODIS image acquired at 5:05 UTC on 28 June 2008; (b) ENVISAT ASAR image acquired at 1:55 UTC on 28 June 2008. The 5 sub-regions A?E are marked with red polygons.
Sensor Spatial resolution/m NDVI Method Region A Region B Region C Region D Region E Region F
HJ-1A/B CCD 30 T=0 13.50 62.60 44.86 51.86 34.17 83.12
T=0.1 5.15 25.93 35.09 25.53 18.10 33.55
T=0.2 3.03 11.58 16.86 14.20 12.04 18.80
OTSUT 3.37 11.34 11.97 10.45 10.88 15.06
Landsat 8 OLI 30 T=0 13.66 62.24 45.66 42.38 21.53 43.43
T=0.1 4.63 22.23 26.97 19.59 15.48 29.10
T=0.2 3.89 18.14 20.78 15.43 13.63 24.53
OTSUT 3.71 16.28 17.22 13.00 12.70 23.67
Aqua MODIS 250 T=0 8.50 45.19 48.69 33.94 29.69 57.63
T=0.1 6.13 32.63 38.19 24.13 22.50 37.19
T=0.2 4.75 22.63 31.25 17.81 16.44 19.63
OTSUT 5.88 28.75 27.38 16.50 18.00 35.00
Tab.2  Area (km2) of U. prolifera patches extracted from optical satellite images on 24 June 2013
Fig.4  The U. prolifera monitoring results in sub-region F on HJ-1A/B CCD image: (a) NDVI image, (b) detected U. prolifera (white color pixels) using NDVI method with T=0, (c) T=0.1, (d) T=0.2, and (e) OTSU threshold.
Fig.5  The U. prolifera monitoring results in sub-region F on Landsat 8 OLI image: (a) NDVI image, (b) detected U. prolifera (white color pixels) using NDVI method with T=0, (c) T=0.1, (d) T=0.2, and (e) OTSU threshold.
Fig.6  The U. prolifera monitoring results in sub-region F on Aqua MODIS image: (a) NDVI image, (b) detected U. prolifera (white color pixels) using NDVI method with T=0, (c) T=0.1, (d) T=0.2, and (e) OTSU threshold.
Fig.7  Comparison of U. prolifera area (km2) calculated from HJ-1A/B CCD, Landsat8 OLI, and Aqua MODIS images in region A-F using NDVI method with OTSU threshold.
Area ratio Region A Region B Region C Region D Region E Region F
MODIS/CCD 1.7 2.5 2.3 1.6 1.7 2.3
MODIS/OLI 1.6 1.8 1.6 1.3 1.4 1.5
Tab.3  Ratio between macroalgae areas extracted from Aqua MODIS and that from HJ1-A/B CCD and Landsat 8 OLI images using NDVI method with OTSU threshold
Region A Region B Region C Region D Region E Region F
HJ-1A/B CCD/ km2 3.37 11.34 11.97 10.45 10.88 15.06
Landsat 8 OLI/ km2 3.71 16.28 17.22 13.00 12.70 23.67
Diffrence/% 10.1 43.6 43.8 24.4 16.8 57.2
Tab.4  Area (km2) of U. prolifera patches extracted from HJ1-A/B CCD and Landsat 8 OLI images with the same spatial resolution (30 m) using NDVI method with OTSU threshold. The difference in the table is the percentage of the area difference divided by the area from CCD
Fig.8  Area of U. prolifera patches calculated from HJ-1A/B CCD and Landsat 8 OLI images before (resolution of 30 m) and after resample (resolution of 250 m) using NDVI method with (a) T=0, (b) T=0.1, (c) T=0.2, and (d) OTSU threshold.
Fig.9  The U. prolifera monitoring results in sub-region E on MODIS and SAR images acquired on 28 June 2008: (a) MODIS NDVI image, (b) detected U. prolifera (white color pixels) from MODIS using NDVI method with OTSU threshold, (c) SAR NRCS image, (d) detected U. prolifera (white color pixels) from SAR using OTSU threshold.
Sensor Spatial Resolution/m Region A Region B Region C Region D Region E
ENVISATASAR 30 0.86 0.91 0.22 0.38 2.88
250 (After resampling) 1.06 1.13 0.31 0.44 3.31
Aqua MODIS 250 1.94 1.75 0.63 1.25 4.94
Tab.5  Area (km2) of U. prolifera patches extracted from Aqua MODIS and ENVISAT ASAR images on 28 June 2008
1 Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H, Gardner J A, Adler-Golden S M, Matthew M W, Berk A, Bernstein L S, Acharya P K, Miller D, Lewis P (2002). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. Geoscience and Remote Sensing Symposium, IGARSS'02, 3: 1414–1418
2 Cui T, Zhang J, Sun L, Jia Y, Zhao W, Wang Z, Meng J (2012). Satellite monitoring of massive green macroalgae bloom (GMB): imaging ability comparison of multi-source data and drifting velocity estimation. Int J Remote Sens, 33(17): 5513–5527
https://doi.org/10.1080/01431161.2012.663112
3 Hu C (2009). A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ, 113(10): 2118–2129
https://doi.org/10.1016/j.rse.2009.05.012
4 Hu C, He M (2008). Origin and offshore extent of floating algae in Olympic sailing area. Eos Trans AGU, 89(33): 302–303
https://doi.org/10.1029/2008EO330002
5 Hu C, Li D, Chen C, Ge J, Muller-Karger F E, Liu J, Yu F, He M (2010). On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. Journal of Geophysical Research, 115(C5)
https://doi.org/10.1029/2009JC005561
6 Huang Z (2001). Marine Species and Their Distribution in China’s Seas. Malabar: Krieger Pub Co, 1–599
7 Keesing J K, Liu D Y, Fearns P, Garcia R (2011). Inter-and Intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar Pollut Bull, 62(6): 1169–1182
https://doi.org/10.1016/j.marpolbul.2011.03.040
7a Li X, Zheng W, Pichel W, Zou C (2007). Coastal katabatic winds imaged by SAR. Geophys Res Lett, 34(3): L03804
8 Li Y, Liang G, Yu S M, Chen P (2011). Selection of microware remote sensing data of monitoring of Entermorpha prolifera disaster. Marine Environmental Science, 30(5): 739–742 (in Chinese)
9 Liu D, Keesing J K, He P, Wang Z, Shi Y, Wang Y (2013). The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar Coast Shelf Sci, 129: 2–10
https://doi.org/10.1016/j.ecss.2013.05.021
10 Liu D, Keesing J K, Xing Q, Shi P (2009). World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar Pollut Bull, 58(6): 888–895
https://doi.org/10.1016/j.marpolbul.2009.01.013
11 Otsu N A (1979). A threshold selection method from gray –level histograms. IEEE Trans Syst Man Cybern, 9(1): 919–926
12 Pang S, Liu F, Shan T, Xu N, Zhang Z, Gao S, Chopin T, Sun S (2010). Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar Environ Res, 69(4): 207–215
https://doi.org/10.1016/j.marenvres.2009.10.007
13 Qiao F, Dai D, Simpson J, Svendsen H (2009). Banded structure of drifting macroalgae. Mar Pollut Bull, 58(12): 1792–1795
https://doi.org/10.1016/j.marpolbul.2009.08.006
14 Ren J, Zhao J (2002). Progress and prospect of ocean color remote sensing in case 2 waters. Advance in Earth Sciences, 17(3): 363–371 (in Chinese)
15 Shi W, Wang M (2009). Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. Journal of Geophysical Research, 114, C12010
https://doi.org/10.1029/2009JC005513
16 Shimada S, Yokoyama N, Arai S, Hiraoka M (2009). Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. Nineteenth International Seaweed Symposium. Springer Netherlands, 2: 529–539
17 Sun S, Wang F, Li C, Qin S, Zhou M, Ding L, Pang S, Duan D, Wang G, Yin B, Yu R, Jiang P, Liu Z, Zhang G, Fei X, Zhou M (2008). Emerging challenges: massive green algae blooms in the Yellow Sea. Nature Proceedings, hdl:10101/npre.2008.2266.1.
17a Wackerman C, Clemente-Colon P, Pichel W, Li X (2002). A two-scale model to predict C-band VV and HH normalized radar cross section values over the ocean. Can J Rem Sens, 28(3): 367–384
17b Wang C, Liao M, Li X (2008). Ship detection in SAR image based on the alpha-stable distribution. Sensors, 8(8): 4948–4960
18 Xing Q, Zheng X, Shi P, Hao J, Yu D, Liang S, Liu D, Zhang Y (2011). Monitoring “green tide” in the Yellow Sea and the East China Sea using multi-temporal and multi-source remote sensing images. Spectroscopy and Spectral Analysis, 31(6): 1644–1647 (in Chinese)
18a Xu Q, Lin H, Lin X, Zuo J, Zheng Q, Pichel W, Liu Y (2011). Assessment of an analytical model for sea surface wind speeed retrieval from spaceborne SAR. Int J Remote Sens, 31(4): 993–1008
19 Xu Q, Zhang H, Ju L, Chen M (2014). Interannual variability of Ulva prolifera blooms in the Yellow Sea. Int J Remote Sens, 11–12: 1–15
20 Xu X, Xu S, Jin L, Song E (2011). Characteristic analysis of Otsu threshold and its applications. Pattern Recognit Lett, 32(7): 956–961
https://doi.org/10.1016/j.patrec.2011.01.021
20a Yang X, Li X, Zheng Q, Gu X, Pichel WG, Li Z (2011). Comparison of ocean-surface winds retrieved from Quik<?Pub Caret?>SCAT scatterometer and Radarsat-1 SAR in offshore waters of the U.S. west coast. IEEE Geosci Remote Sens Lett, 8(1): 163–167
[1] Shahla TASHAKKOR, Atefeh CHAMANI, Mozhgan Ahmadi NADOUSHAN, Minoo MOSHTAGHIE. Acoustics in urban parks: Does the structure of narrow urban parks matter in designing a calmer urban landscape?[J]. Front. Earth Sci., 2020, 14(3): 512-521.
[2] Jianhong LIU, Clement ATZBERGER, Xin HUANG, Kejian SHEN, Yongmei LIU, Lei WANG. Modeling grass yields in Qinghai Province, China, based on MODIS NDVI data—an empirical comparison[J]. Front. Earth Sci., 2020, 14(2): 413-429.
[3] Shan LIU, Fengli ZHANG, Shiying WEI, Qingbo LIU, Na LIU, Yun SHAO, Steven J. BURIAN. Building damage mapping based on Touzi decomposition using quad-polarimetric ALOS PALSAR data[J]. Front. Earth Sci., 2020, 14(2): 401-412.
[4] Shiyong YAN, Ke SHI, Yi LI, Jinglong LIU, Hongfeng ZHAO. Integration of satellite remote sensing data in underground coal fire detection: A case study of the Fukang region, Xinjiang, China[J]. Front. Earth Sci., 2020, 14(1): 1-12.
[5] Yi HE, Haowen YAN, Lei MA, Lifeng ZHANG, Lisha QIU, Shuwen YANG. Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery[J]. Front. Earth Sci., 2020, 14(1): 221-235.
[6] Zhuokun PAN, Yueming HU, Guangxing WANG. Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping[J]. Front. Earth Sci., 2019, 13(3): 495-509.
[7] Xuezhu CUI, Shaoying LI, Xuetong WANG, Xiaolong XUE. Driving factors of urban land growth in Guangzhou and its implications for sustainable development[J]. Front. Earth Sci., 2019, 13(3): 464-477.
[8] Zhitao WU, Mingyue WANG, Hong ZHANG, Ziqiang DU. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China[J]. Front. Earth Sci., 2019, 13(2): 430-443.
[9] Meinan ZHENG, Kazhong DENG, Hongdong FAN, Jilei HUANG. Monitoring and analysis of mining 3D deformation by multi-platform SAR images with the probability integral method[J]. Front. Earth Sci., 2019, 13(1): 169-179.
[10] Jianhong LIU, Le LI, Xin HUANG, Yongmei LIU, Tongsheng LI. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model[J]. Front. Earth Sci., 2019, 13(1): 111-123.
[11] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[12] Jincui WANG, Yongsheng ZHAO, Jichao SUN, Ying ZHANG, Chunyan LIU. The distribution and sources of polycyclic aromatic hydrocarbons in shallow groundwater from an alluvial-diluvial fan of the Hutuo River in North China[J]. Front. Earth Sci., 2019, 13(1): 33-42.
[13] Jun WANG, Xiaohong MENG, Zhaoxi CHEN, Fang LI. Interpretation of gravity data for fault distribution near the Mongolia–Hinggan metallogenic belt in the eastern China-Mongolia frontier area[J]. Front. Earth Sci., 2018, 12(4): 808-817.
[14] Xiaojuan HUANG, Mingguo MA, Xufeng WANG, Xuguang TANG, Hong YANG. The uncertainty analysis of the MODIS GPP product in global maize croplands[J]. Front. Earth Sci., 2018, 12(4): 739-749.
[15] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed