Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 742-752    https://doi.org/10.1007/s11707-015-0541-4
RESEARCH ARTICLE
Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998---2014
R. K. MISHRA(), R. K. NAIK, N. ANIL KUMAR
ESSO-National Centre for Antarctic and Ocean Research, Ministry of Earth Sciences (MoES), Vasco-da-Gama, Goa, India
 Download: PDF(2235 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study investigates the effects of light and temperature on the surface water diatoms and chlorophytes, phytoplankton in the Indian Ocean sector of the Southern Ocean (SO) during the austral summer of 1998‒2014. Significant longitudinal variations in hydrographic and biological parameters were observed at the Sub tropical front (STF), Sub Antarctic front (SAF) and Polar front (PF) along 56°E‒58°E. The concentrations of total surface chlorophyll a (Chl a), diatoms, and chlorophytes measured by the National Aeronautics Space Agency (NASA) estimated by the Sea-Viewing Wide Field-of-View Sensors (SeaWiFS), the Moderate Resolution Imaging Spectro Radiometer (MODIS), and the NASA Ocean Biological Model (NOBM) were used in the study. Variations in the concentration of total Chl a was remarkable amongst the fronts during the study period. The contribution of diatoms to the total concentration of surface Chl a increased towards south from the STF to the PF while it decreased in the case of chlorophytes. The maximum photosynthetically active radiation (PAR) was observed at the STF and it progressively decreased to the PF through the SAF. At the PF region the contribution of diatoms to the total Chl a biomass was≥80%. On the other hand, the chlorophytes showed a contrary distribution pattern with≥70% of the total Chl a biomass recorded at the STF which gradually decreased towards the PF, mainly attributed to the temperate adaptation. This clearly reveals that the trend of diatoms increased at the STF and decreased at the SAF and the PF. Further, the trend of chlorophytes was increased at the STF, SAF and PF with a shift in the community in the frontal system of the Indian Ocean sector of the SO.

Keywords chlorophyll a      diatoms      chlorophytes      SST      PAR      Southern Ocean     
Corresponding Author(s): R. K. MISHRA   
Just Accepted Date: 31 August 2015   Online First Date: 30 September 2015    Issue Date: 30 October 2015
 Cite this article:   
R. K. MISHRA,R. K. NAIK,N. ANIL KUMAR. Adaptations of phytoplankton in the Indian Ocean sector of the Southern Ocean during austral summer of 1998---2014[J]. Front. Earth Sci., 2015, 9(4): 742-752.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0541-4
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/742
1 B R Allanson, R C Hart, J R E Lutjehams (1981). Observations on the nutrients, chlorophyll, and primary production of the Southern Ocean south of Africa. S Afr J Antarct Res, 10/11: 3–14
2 S Alvain, Le C Quéré, L Bopp, M F Racault, G Beaugrand, D Dessailly, E T Buitenhuis (2013). Rapid climatic driven shifts of diatoms at high latitudes. Remote Sens Environ, 132: 195–201
https://doi.org/10.1016/j.rse.2013.01.014
3 O R Anderson (1976). Respiration and photosynthesis during resting cell formation in Amphora coffeaeformis (A.G) Kutz. Limnological Oceanography, 21(3): 452–456
https://doi.org/10.4319/lo.1976.21.3.0452
4 C Bachy, P Lopez-Garcia, A Vereshchaka, D Moreira (2011). Diversity and vertical distribution of microbial eukaryotes in the snow, sea ice and sea water near the North Pole at the end of the polar night. Frontiers Microbiology, 2, doi: 3389/fmicb.2011.00106
5 K Banse, D C English (1997). Near-surface phytoplankton pigment from the coast zone color scanner in the sub Antarctic region southeast of New Zealand. Mar Ecol Prog Ser, 156: 51–66
https://doi.org/10.3354/meps156051
6 U V Bathmann, R Scharek, C Klaas, C D Dubischar, V Smetacek (1997). Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr, 44(1–2): 51–67
https://doi.org/10.1016/S0967-0645(96)00063-X
7 I M Belkin, A L Gordon (1996). Southern Ocean fronts from the Greenwich meridian to Tasmania. J Geophys Res, 101(C2): 3675–3696
https://doi.org/10.1029/95JC02750
8 B Bischoff, C Wiencke (1995). Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol, 30(1): 19–27
https://doi.org/10.1080/09670269500650771
9 G Blanc, I Agarkova, J Grimwood, A Kuo, A Brueggeman, D D Dunigan, J Gurnon, I Ladunga, E Lindquist, S Lucas, J Pangilanan, T Pröschold, A Salamov, J Schmutz, D Weeks, T Yamada, A Lomsadze, M Borodovsky, J M Claverie, I V Grigorriev, J L Van Etten (2012). The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol, 13(5): R39
https://doi.org/10.1186/gb-2012-13-5-r39
10 J J Bolten, K Lüning (1982). Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol, 66(1): 89–94
https://doi.org/10.1007/BF00397259
11 J J Bolton(1983). Ecodinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar Biol, 73: 131–138
12 P W Boyd (2002). Environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol, 38(5): 844–861
https://doi.org/10.1046/j.1529-8817.2002.t01-1-01203.x
13 S L Brown, M R Landry (2001). Microbial community structure and biomass in surface waters during a polar front summer bloom along 170°W. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4039–4058
https://doi.org/10.1016/S0967-0645(01)00080-7
14 Y Dandonneau, P Y Deschamps, J M Nicolas, H Loisel, J Blanchot, Y Montel, F Thieuleux, G Becu (2004). Seasonal and inter-annual variability of ocean color and composition of phytoplankton communities in north Atlantic, equatorial pacific and south pacific. Deep Sea Research II, 51: 303–318
15 H J W de Baar, P W Boyd, K H Coale, M R Landry, A Tsuda, P Assmy, D C E Bakker, Y Bozec, R T Barber, M A Brzezinski, K O M Buesseler,, P L Boyé, F Croot,, M Y Gervais, P J Gorbunov, W T Harrison, P Hiscock, C Laan, C S Lancelot, M Law, A Levasseur, F J Marchetti, J Millero, Y Nishioka, T Nojiri, U Van Oijen, M J A Riebesell, H Rijkenberg, S Saito, K R Takeda, M J W Timmermans, Veldhuis (2005). Synthesis of iron fertilization experiments: from the Iron Age in the age of enlightenment. J Geophys Res, 110(9): 1–24
16 R W Eppley (1972). Temperature and phytoplankton growth in the sea. Fish Bull, 70: 1063–1085
17 M P Gall, P W Boyd, J Hall, K A Safi, H Chang (2001). Phytoplankton processes. Part 1: community structure during the Southern ocean on Release Experiment (SOIREE). Deep Sea Res Part II Top Stud Oceanogr, 48(11–12): 2551–2570
https://doi.org/10.1016/S0967-0645(01)00008-X
18 W W Gregg, M E Conkright, P Ginoux, J E O’Reilly, N W Casey (2003). Ocean primary production and climate: global decadal changes. Geophys Res Lett, 30(15): 1809–1813
https://doi.org/10.1029/2003GL016889
19 T Hirata, N J Hardman-Mountford, R Barlow, T Lamont, R Brewin, T Smyth, J Aiken (2009). An inherent optical property approach to the estimation of size-specific photosynthetic rates in eastern boundary upwelling zones from satellite ocean colour: an initial assessment. Prog Oceanogr, 83(1–4): 393–397
https://doi.org/10.1016/j.pocean.2009.07.019
20 N P Holliday, J F Read (1998). Surface oceanic fronts between Africa and Antarctica. Deep-Sea Res, 45(2–3): 217–238
https://doi.org/10.1016/S0967-0637(97)00081-2
21 B Jena, S Sahu, K Avinash, D Swain (2013). Observation of oligotrophic gyre variability in the south Indian Ocean: environmental forcing and biological response. Deep Sea Res Part I Oceanogr Res Pap, 80: 1–10
https://doi.org/10.1016/j.dsr.2013.06.002
22 E Martinez, D Antoine, D’ F Ortenzio, B Genthili (2009). Climate driven basin-scale decadal oscillation of oceanic phytoplankton. Science, 326(5957): 1253–1256
https://doi.org/10.1126/science.1177012
23 I Masotti, C Moulin, S Alvain, L Bopp, A Tagliabue, D Antoine (2011). Large-scale shifts in phytoplankton groups in the equatorial pacific during ENSO cycles. Biogeosciences, 8(3): 539–550
https://doi.org/10.5194/bg-8-539-2011
24 C Mengelt, M R Abbott, J A Barth, R M Letelier, C I Measures, S Vink (2001). Phytoplankton pigment distributions in relation to silicic acid, iron and the physical structure across the Antarctic Polar Front, 170ºW, during austral summer. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4081–4100
https://doi.org/10.1016/S0967-0645(01)00081-9
25 T Mock, R Gradinger (1999). Determination of Arctic ice algal production with a new in situ incubation technique. Mar Ecol Prog Ser, 177: 15–26
https://doi.org/10.3354/meps177015
26 J K Moore, M R Abbott (2000). Phytoplankton chlorophyll distributions and primary production in the Southern Ocean. J Geophys Res, 105(C12): 28709–28722
https://doi.org/10.1029/1999JC000043
27 J K Moore, M R Abbott, J G Richman, W O Smith, T J Cowles, K H Coale, W D Gardner, R T Barber (1999). SeaWiFS satellite ocean color data from the Southern Ocean. Geophys Res Lett, 26(10): 1465–1468
https://doi.org/10.1029/1999GL900242
28 R M Morgan-Kiss, A G Ivanov, S Modla, K Czymmek, N P A Huner, J P Priscu, J T Lisle, T E Hanson (2008). Identity and physiology of new psychrophilic eukaryotic green alga. Chlorella sp., strain BI, isolated from a transitory pond near Bratina Island, Antarctica. Extremophiles, 12(5): 701–711
https://doi.org/10.1007/s00792-008-0176-4
29 R M Morgan-Kiss, J C Priscu, T Pocock, L Gudynaite-Savitch, N P A Huner (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol Rev, 70(1): 222–252
https://doi.org/10.1128/MMBR.70.1.222-252.2006
30 I A Neven, J Stefels, S M A C van Heuven, H J W de Baar, J T M Elzenga (2011). High plasticity in inorganic carbon uptake by Southern Ocean phytoplankton in response to ambient CO2. Deep Sea Res part II, 306: 79–86
31 A H Orsi, T III Whitworth, W D Nowlin Jr (1995). On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res, 42(5): 641–673
https://doi.org/10.1016/0967-0637(95)00021-W
32 E Peters (1996). Prolonged darkness and diatom mortality: II. marine temperate species. J Exp Mar Biol Ecol, 207: 43–58
33 E Peters, D N Thomas (1996). Prolonged darkness and diatom mortality I: marine Antarctic species. J Exp Mar Biol Ecol, 207: 25–41
34 C S Rousseaux, W W Gregg (2012). Climate variability and phytoplankton composition in the pacific Ocean. J Geophys Res, 117(C10): C10006
https://doi.org/10.1029/2012JC008083
35 K E Selph, M R Landry, C B Allen, A Calbet, S Christensen, R R Bidigare (2001). Microbial community composition and growth dynamics in the Antarctic Polar Front and seasonal ice zone during late spring1997. Deep Sea Res Part II Top Stud Oceanogr, 48(19–20): 4059–4080
https://doi.org/10.1016/S0967-0645(01)00077-7
36 V Smetacek (1985). The annual cycle of Kiel Bight plankton: a long term analysis. Estuaries, 8(2): 145–157
https://doi.org/10.2307/1351864
37 V Smetacek, J W de Baar Hein, U Bathmann, K Lochte, L Rutgers van der, M Michiel (1997) . Ecology and biogeochemistry of the Antarctic circumpolar current during austral spring: a summary of Southern Ocean JGOFS cruise ANT X/6 of RV Polarstern. Deep Sea Research Part II: Topical Studies in Oceanography, 44(1–2): 1–21,
https://doi.org/10.1016/S0967-0645(96)00100-2
38 T Smyda (1980). Phytoplankton species succession. In: I Morris, ed. Physiological Ecology of Phytoplankton. University of California (press), 493–570
39 R F Strzepek, P J Harrison (2004). Photosynthetic architecture differs in coastal and oceanic diatoms. Nature, 431(7009): 689–692
https://doi.org/10.1038/nature02954
40 S S Suhas, R Mohan, S Patil, B Jena, R Chacko, J V George, S Noronha, N Singh, L Priya, M Sudhakar (2015). Oceanic pCO2 in the Indian sector of the Southern Ocean during the austral summer–winter transition phase. Deep Sea Res Part II Top Stud Oceanogr,
https://doi.org/10.1016/j.dsr2.2015.05.017
41 T Takahashi, C Sweeney, B Hales, D W Chipman, T Newberger, J G Goddard, R A Iannuzzi, S C Sutherland (2012). The changing carbon cycle in the Southern Ocean. Oceanography (Wash DC), 25(3): 26–37
https://doi.org/10.5670/oceanog.2012.71
42 C Wiencke, I Bartsch, B Bischoff, F Peters A, A M Breeman (1994). Temperature requirements and biogeography of Antarctic, Arctic and Amphi equatorial seaweed. Bot Mar, 37(3): 247–259
https://doi.org/10.1515/botm.1994.37.3.247
43 C Wiencke, G Fischer (1990). Growth and stable isotope composition of cold-water macroalgae in relation to light and temperature. Mar Ecol Prog Ser, 65: 283–292
https://doi.org/10.3354/meps065283
44 C Wiencke, tom I Dieck (1989). Temperature requirements for growth and temperature tolerance of macro-algae endemic to the Antarctic region. Mar Ecol Prog Ser, 54: 189–197
https://doi.org/10.3354/meps054189
45 J Zeldis (2001). Mesozooplankton community composition, feeding and export production during SOIREE. Deep Sea Res Part II Top Stud Oceanogr, 48(11–12): 2615–2634
https://doi.org/10.1016/S0967-0645(01)00011-X
[1] Jiashan ZHU, Ming WEI, Sinan GAO, Chunsong LU. The scattering mechanism of squall lines with C-Band dual polarization radar. Part II: the mechanism of an abnormal ZDR echo in clear air based on the parameterization of turbulence deformation[J]. Front. Earth Sci., 2022, 16(2): 236-247.
[2] Weicheng NI, Ad STOFFELEN, Kaijun REN. Hurricane eye morphology extraction from SAR images by texture analysis[J]. Front. Earth Sci., 2022, 16(1): 190-205.
[3] Hiroshi TAKAGI, Atsuhei TAKAHASHI. Short-fetch high waves during the passage of 2019 Typhoon Faxai over Tokyo Bay[J]. Front. Earth Sci., 2022, 16(1): 206-219.
[4] Weisheng HOU, Qiaochu YANG, Xiuwen CHEN, Fan XIAO, Yonghua CHEN. Uncertainty analysis and visualization of geological subsurface and its application in metro station construction[J]. Front. Earth Sci., 2021, 15(3): 692-704.
[5] Amin MOHEBBI, Fan YU, Shiqing CAI, Simin AKBARIYEH, Edward J. SMAGLIK. Spatial study of particulate matter distribution, based on climatic indicators during major dust storms in the State of Arizona[J]. Front. Earth Sci., 2021, 15(1): 133-150.
[6] Md. Rezuanul ISLAM, Hiroshi TAKAGI. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay[J]. Front. Earth Sci., 2020, 14(3): 553-567.
[7] Boyuan ZHU, Jinyun DENG, Jinwu TANG, Wenjun YU, Alistair G.L. BORTHWICK, Yuanfang CHAI, Zhaohua SUN, Yitian LI. Erosion-deposition patterns and depo-center movements in branching channels at the near-estuary reach of the Yangtze River[J]. Front. Earth Sci., 2020, 14(3): 537-552.
[8] Qingyang ZHENG, Weiping WANG, Shuai LIU, Shisong QU. Physical clogging experiment of sand gravel infiltration with Yellow River water in the Yufuhe River channel of Jinan, China[J]. Front. Earth Sci., 2020, 14(2): 306-314.
[9] Yi HE, Haowen YAN, Lei MA, Lifeng ZHANG, Lisha QIU, Shuwen YANG. Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery[J]. Front. Earth Sci., 2020, 14(1): 221-235.
[10] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[11] Hongchun ZHU, Yuexue XU, Yu CHENG, Haiying LIU, Yipeng ZHAO. Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China[J]. Front. Earth Sci., 2019, 13(3): 641-655.
[12] Xue YU, Yue LI, Min XI, Fanlong KONG, Mingyue PANG, Zhengda YU. Ecological vulnerability analysis of Beidagang National Park, China[J]. Front. Earth Sci., 2019, 13(2): 385-397.
[13] Lei ZHANG, Xiaobin YIN, Hanqing SHI, Zhenzhan WANG, Qing XU. Estimation of wind speeds inside Super Typhoon Nepartak from AMSR2 low-frequency brightness temperatures[J]. Front. Earth Sci., 2019, 13(1): 124-131.
[14] Xiaoshu HOU, Lei CHEN, Xiang LIU, Miao LI, Zhenyao SHEN. Parameter transferability across spatial resolutions in urban hydrological modelling: a case study in Beijing, China[J]. Front. Earth Sci., 2019, 13(1): 18-32.
[15] Jianhong LIU, Le LI, Xin HUANG, Yongmei LIU, Tongsheng LI. Mapping paddy rice in Jiangsu Province, China, based on phenological parameters and a decision tree model[J]. Front. Earth Sci., 2019, 13(1): 111-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed