Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (4) : 862-876    https://doi.org/10.1007/s11707-018-0722-z
RESEARCH ARTICLE
Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions
Jingjie ZANG1, Yanyan LEI2, Huan YANG1()
1. State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
2. Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
 Download: PDF(1499 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Proxies based on glycerol dialkyl glycerol tetraethers (GDGTs), a suite of membrane lipids occurring ubiquitously in soils, have generated increasing interest in quantitative paleo-environmental reconstruction. Hot and dry climates are likely to have occurred in the geological past; however, the limitations and applicability of these proxies to hot and dry environments are still unknown. In this study, we analyzed the GDGT distribution in the Turpan (TRP) basin of China, where the highest soil temperature can be approximately 70°C, and the mean annual precipitation (MAP) is 15.3 mm. We compared GDGT-based proxies among TRP soils, Nanyang (NY) soils, and Kunming (KM) soils; these three sites exhibit similar mean annual air temperature (MAAT) albeit contrasting temperature seasonality and MAP. Archaeal isoprenoidal GDGTs (isoGDGTs) dominate over bacterial branched GDGTs (brGDGTs) in most TRP soils; this is a characteristic GDGT distribution pattern for soils from dry regions globally. Another feature is the anomalously high GDGT-0/crenarchaeol ratio, which is generally attributed to the contribution of anaerobic methanogenic archaea by previous studies; however, these anaerobic archaea are unlikely to be highly abundant in the dry TRP soils, indicating that certain uncultured halophilic Euryarchaeota are likely to produce a significant amount of GDGT-0 that finally results in a high GDGT-0/Cren ratio. The changes in the salinity of the TRP soils appear to be an important factor affecting the MBT’5ME and the relative abundance of 6- vs. 5-methyl pentamethylated brGDGTs (IRIIa’). This is likely to introduce certain scatters in the correlations between MBT’5ME and MAAT and that between IRIIa’ and pH determined at the global scale. A comparison of the MBT’5ME-inferred temperature between TRP, NY, and KM soils does not indicate a significant bias toward summer temperature, indicating that brGDGT paleo-thermometers in soils could reflect the MAAT.

Keywords GDGTs      Turpan soils      semi-arid and arid areas      salinity      MBT’5ME     
Corresponding Author(s): Huan YANG   
Just Accepted Date: 28 August 2018   Online First Date: 21 September 2018    Issue Date: 20 November 2018
 Cite this article:   
Jingjie ZANG,Yanyan LEI,Huan YANG. Distribution of glycerol ethers in Turpan soils: implications for use of GDGT-based proxies in hot and dry regions[J]. Front. Earth Sci., 2018, 12(4): 862-876.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0722-z
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I4/862
Fig.1  Structures of archaeol, archaeal isoprenoid GDGTs (isoGDGTs), and bacterial branched GDGTs (brGDGTs).
Fig.2  Sampling sites in TRP basin. The sampling site for each soil sample is listed below: Site 1, TRP-01; Site 2, TRP-02 and TRP-03; Site 3, TRP-04; Site 4, TRP-07 and TRP-08; Site 5, TRP-09, TRP-10, and TRP-11; Site 6, TRP-12, TRP-13, and TRP-14; Site 7, TRP-15 and TRP-16; Site 8, TRP-18, TRP-19, and TRP-20; and Site 9, TRP-21 and TRP-22.
Fig.3  Mean monthly temperature (a) and precipitation (b) in TRP basin, Nanyang (NY), and Kunming (KM) in China. The mean monthly air temperatures and precipitation were both averaged over the 30 y from 1981 to 2010.
Sample Location Altitude/m Sampling information
TLF-01 89°13′2″E, 42°54′55″N (site 1) −17 TLF-01 was collected at a site neighboring a grape-growing region
TLF-02 89°14′51″E, 42°53′26″N (site 2) −60 TLF-02 and TLF-03 were collected from uncultivated land with sporadically distributed bush. The soils were very dry, hardened, and mixed with gravels
TLF-03 89°14′51″E, 42°53′26″N (site 2) −60
TLF-04 89°15′19″E, 42°41′30″N (site 3) −154 TLF−04 was collected from a barren desert with sporadically distributed bush
TLF-07 89°30′35″E, 42°55′4″N (site 4) −40 TLF-07 and TLF-08 were collected near the Flaming Mountain. The surface temperature could reach up to 60°C in summer. Soils were very dry without any vegetation
TLF-08 89°30′35″E, 42°55′4″N (site 4) −40
TLF-09 89°13′32″E, 42°58′35″N (site 5) 78 TLF-9 and TLF-10 was collected from a woodland and TLF-11 was collected from a farmland
TLF-10 89°13′32″E, 42°58′35″N (site 5) 78
TLF-11 89°13′32″E, 42°58′35″N (site 5) 78
TLF-12 89°7′39″E, 42°58′45″N (site 6) 69 TLF-12, TLF-13, and TLF-14 were collected from the Karez paradise
TLF-13 89°7′39″E, 42°58′45″N (site 6) 69
TLF-14 89°7′39″E, 42°58′45″N (site 6) 69
TLF-15 89°4′9″E, 42°56′45″N (site 7) −4 TLF-15 and TLF-16 were collected at a site near the Jiaohe Ruins with trees growing
TLF-16 89°4′9″E, 42°56′45″N (site 7) −4
TLF-18 89°4′33″E, 42°56′40″N (site 8) 10 TLF-18, TLF-19, and TLF-20 were collected from a mountain slope
TLF-19 89°4′33″E, 42°56′40″N (site 8) 10
TLF-20 89°4′33″E, 42°56′40″N (site 8) 10
TLF-21 89°11′7″E, 42°57′17″N (site 9) 17 TLF-21 and TLF-22 were collected from a mountain slope
TLF-22 89°11′7″E, 42°57′17″N (site 9) 17
Tab.1  Soil-sample information
Fig.4  Average fractional abundances of isoGDGTs (a) and brGDGTs (b) in the TRP soils. The error bars display the range of the fractional abundances of isoGDGTs and brGDGTs.
Fig.5  Box plots showing the range of (a) Ri/b, (b) BIT, (c) IRIIa’, and (d) MBT’6ME in the TRP, NY, and KM soils.
Fig.6  Box plots showing range of (a) MBT’ and (b) GDGT-0/Cren for the TRP, NY, and KM soils and other Chinese soils (CHN) as reported by Yang et al. (2014).
Fig.7  Box plot showing pH range for TRP, NY, and KM soils.
Fig.8  Scatter plot showing correlation between MBT’ and MAP (a), between MBT’6ME and MAP (b), and between MBT’5ME and MAAT (c). Data for global soils (De Jonge et al., 2014a), soils from Northern China (Wang et al., 2016), the NY soils (Lei et al., 2016), the KM soils (Lei et al., 2016), and the TRP soils are compiled here. Here, IR6ME for all the selected data are>0.5. Two outlier soil samples (Ecuador-19 and Egypt-1; De Jonge et al., 2014a) are excluded from the global soils. Meanwhile, the samples collected from northern China around Da Hinggan Mountains are also excluded from the plot because the soil pH of these soils<7. The dotted line in (c) exhibits the linear correlation between the MBT’5ME and MAAT of the global soils (R2 = 0.66, p<0.05), as reported by De Jonge et al. (2014a).
Fig.9  RDA plots showing relationship between environmental variables and GDGT proxies. The numbers in the plots represent the corresponding samples in the table (Table 1, in the order of TLF-01 to TLF-22).
Fig.10  Scatter plots showing relationship of (a) archaeol/GDGT-0, (b) f(6ME), (c) IRIIa’, and (d) MBT’5ME with soil salinity.
Sample f(GDGT-0) f(GDGT-1) f(GDGT-2) f(GDGT-3) f(Cren) f(Cren’) f(IIIa) f(IIIa’) f(IIIb) f(IIIb’) f(IIa) f(IIa’) f(IIb) f(IIb’) f(IIc) f(IIc’) f(Ia) f(Ib) f(Ic)
TLF-01 0.31 0.06 0.08 0.03 0.46 0.06 0.09 0.05 0.00 0.01 0.02 0.55 0.01 0.09 0.00 0.00 0.13 0.04 0.00
TLF-02 0.56 0.05 0.05 0.02 0.29 0.03 0.09 0.08 0.02 0.00 0.01 0.54 0.01 0.12 0.00 0.00 0.08 0.04 0.01
TLF-03 0.44 0.06 0.06 0.03 0.37 0.04 0.01 0.24 0.01 0.01 0.02 0.48 0.01 0.10 0.00 0.01 0.07 0.04 0.01
TLF-04 0.51 0.01 0.11 0.03 0.31 0.03 0.06 0.15 0.01 0.02 0.09 0.29 0.04 0.11 0.01 0.02 0.10 0.08 0.02
TLF-07 0.69 0.02 0.03 0.01 0.23 0.02 0.04 0.14 0.01 0.02 0.08 0.36 0.04 0.10 0.01 0.01 0.10 0.07 0.01
TLF-08 0.78 0.01 0.02 0.02 0.16 0.01 0.02 0.17 0.00 0.00 0.08 0.41 0.04 0.10 0.00 0.00 0.12 0.07 0.00
TLF-09 0.92 0.00 0.01 0.00 0.06 0.01 0.02 0.12 0.01 0.02 0.03 0.38 0.03 0.15 0.00 0.01 0.12 0.10 0.01
TLF-10 0.49 0.02 0.03 0.02 0.41 0.03 0.03 0.09 0.01 0.01 0.04 0.32 0.05 0.16 0.01 0.01 0.13 0.12 0.03
TLF-11 0.87 0.01 0.00 0.00 0.10 0.01 0.02 0.11 0.01 0.02 0.03 0.39 0.03 0.15 0.00 0.01 0.13 0.10 0.01
TLF-12 0.83 0.01 0.01 0.01 0.13 0.01 0.02 0.11 0.00 0.02 0.04 0.37 0.02 0.15 0.00 0.01 0.14 0.11 0.02
TLF-13 0.83 0.01 0.01 0.01 0.13 0.01 0.02 0.11 0.01 0.02 0.04 0.32 0.02 0.15 0.00 0.01 0.16 0.14 0.02
TLF-14 0.77 0.01 0.02 0.01 0.17 0.02 0.02 0.11 0.02 0.02 0.04 0.32 0.02 0.16 0.00 0.01 0.15 0.12 0.02
TLF-15 0.83 0.01 0.01 0.01 0.13 0.01 0.02 0.17 0.00 0.02 0.04 0.41 0.02 0.15 0.00 0.01 0.11 0.06 0.01
TLF-16 0.86 0.01 0.01 0.01 0.10 0.01 0.01 0.19 0.00 0.02 0.02 0.44 0.01 0.15 0.00 0.01 0.09 0.06 0.01
TLF-18 0.70 0.02 0.02 0.01 0.22 0.03 0.01 0.01 0.01 0.01 0.03 0.55 0.03 0.14 0.00 0.01 0.10 0.08 0.02
TLF-19 0.68 0.02 0.02 0.01 0.24 0.03 0.01 0.13 0.01 0.01 0.02 0.42 0.02 0.12 0.00 0.01 0.09 0.06 0.10
TLF-20 0.55 0.02 0.04 0.02 0.34 0.03 0.01 0.12 0.00 0.02 0.03 0.43 0.03 0.12 0.00 0.01 0.11 0.08 0.02
TLF-21 0.83 0.02 0.01 0.01 0.13 0.01 0.00 0.19 0.00 0.00 0.03 0.51 0.01 0.07 0.00 0.00 0.14 0.05 0.00
TLF-22 0.69 0.02 0.02 0.01 0.25 0.01 0.01 0.24 0.01 0.00 0.01 0.56 0.00 0.07 0.00 0.00 0.07 0.02 0.00
Tab.2  Fractional abundance of isoGDGTs and brGDGTs in the TRP soils. The fractional abundance of each isoGDGT component is based on only the isoGDGTs, whereas the fractional abundance of the brGDGTs is calculated relative to the total brGDGTs
Sample pH SWC Salinity/
(mg·g−1)
Archaeol/
GDGT−0
GDGT-0/Cren BIT IRIIIa’ IRIIa’ MBT MBT’ MBT’5ME MBT’6ME CBT CBT5ME CBT6ME f(5ME) f(6ME) Ri/b MAATa) MAATmrb)
TLF-01 7.81 25.43 0.15 0.74 0.66 0.78 0.36 0.96 0.17 0.17 0.58 0.19 0.70 0.48 0.72 0.15 0.85 0.50 9.6 3.8
TLF-02 7.99 0.16 4.69 5.27 1.94 0.89 0.46 0.98 0.13 0.13 0.54 0.15 0.57 0.29 0.59 0.15 0.85 0.35 8.3 3.6
TLF-03 8.18 0.23 0.65 5.99 1.18 0.86 0.96 0.96 0.12 0.12 0.74 0.12 0.60 0.28 0.62 0.05 0.95 0.37 14.7 3.1
TLF-04 8.04 0.38 29.57 9.27 1.67 0.82 0.71 0.77 0.21 0.21 0.51 0.26 0.32 0.21 0.32 0.25 0.75 0.50 7.6 3.3
TLF-07 8.01 0.00 14.48 16.93 3.03 0.85 0.76 0.83 0.18 0.19 0.52 0.23 0.40 0.21 0.43 0.22 0.78 0.56 7.8 3.0
TLF-08 7.96 0.00 23.95 8.68 4.83 0.68 0.89 0.84 0.19 0.19 0.58 0.22 0.48 0.27 0.51 0.17 0.83 2.31 9.6 2.7
TLF-09 7.74 0.20 3.53 0.04 14.72 0.57 0.86 0.92 0.24 0.24 0.75 0.27 0.27 0.07 0.28 0.12 0.88 8.14 14.9 5.5
TLF-10 7.58 0.41 18.49 1.11 1.17 0.66 0.71 0.88 0.28 0.28 0.68 0.32 0.17 0.00 0.19 0.19 0.81 0.74 12.8 6.2
TLF-11 7.61 0.36 1.11 0.06 8.58 0.57 0.84 0.93 0.24 0.24 0.74 0.26 0.30 0.08 0.32 0.12 0.88 4.93 14.6 5.4
TLF-12 7.81 5.22 1.58 0.07 6.48 0.63 0.86 0.91 0.27 0.27 0.76 0.30 0.29 0.13 0.30 0.12 0.88 3.01 15.3 5.9
TLF-13 7.87 0.20 0.68 0.06 6.33 0.58 0.84 0.90 0.31 0.32 0.79 0.35 0.22 0.08 0.22 0.13 0.87 3.56 16.2 7.0
TLF-14 7.84 0.69 0.35 0.05 4.52 0.54 0.84 0.88 0.28 0.29 0.75 0.32 0.23 0.13 0.23 0.15 0.85 3.21 15.2 6.1
TLF-15 7.88 8.88 0.35 0.08 6.13 0.55 0.89 0.91 0.18 0.18 0.70 0.20 0.40 0.29 0.40 0.10 0.90 4.44 13.4 3.7
TLF-16 7.92 1.49 0.21 0.13 8.23 0.63 0.97 0.96 0.14 0.16 0.81 0.17 0.40 0.16 0.40 0.04 0.96 3.53 16.9 4.1
TLF-18 7.98 0.53 1.40 0.30 3.19 0.76 0.51 0.95 0.19 0.20 0.74 0.21 0.43 0.06 0.47 0.10 0.90 0.98 14.6 4.7
TLF-19 7.86 0.00 0.36 0.28 2.84 0.74 0.94 0.95 0.25 0.26 0.83 0.27 0.42 0.16 0.45 0.08 0.92 0.99 17.5 7.0
TLF-20 7.51 0.10 1.84 0.70 1.60 0.61 0.91 0.94 0.22 0.22 0.75 0.24 0.38 0.08 0.42 0.10 0.90 1.28 14.9 5.3
TLF-21 7.17 0.00 4.09 0.96 6.29 0.74 1.00 0.95 0.19 0.19 0.85 0.20 0.71 0.43 0.72 0.04 0.96 2.29 18.2 4.2
TLF-22 7.59 0.35 5.02 0.19 2.79 0.73 0.98 0.99 0.09 0.09 0.84 0.09 0.82 0.48 0.83 0.03 0.97 1.32 17.7 2.7
Average 7.81 2.35 5.92 2.68 4.54 0.70 0.80 0.92 0.20 0.21 0.71 0.23 0.43 0.21 0.44 0.12 0.88 2.26 13.7 4.6
Standard deviation ±0.23 ±6.02 ±8.88 ±4.59 ±3.48 ±0.11 ±0.18 ±0.06 ±0.06 ±0.06 ±0.11 ±0.07 ±0.18 ±0.14 ±0.18 ±0.06 ±0.06 ±2.04 ±3.45 ±1.42
Tab.3  Environmental variables and proxies for the TRP soils (n = 19)
Fig.11  (a) Box plots of MAAT estimates for the TRP, NY, and KM soils, calculated using the global calibration of MBT’5ME (De Jonge et al., 2014a). It displays the minimum, maximum, median, lower quartile (25%), and upper quartile (75%) information for the MAAT; (b) Box plots of MAATmr estimates for the TRP, NY, and KM soils, produced using multiple linear regression calibration (Eq. (11)). The MAATmr estimates for the TRP soils are significantly lower than those for the NY and KM soils.
1 Auguet J C, Barberan A, Casamayor E O (2010). Global ecological patterns in uncultured Archaea. ISME J, 4(2): 182–190
https://doi.org/10.1038/ismej.2009.109
2 Balsam W L, Ellwood B B, Ji J F, Williams E R, Long X Y, El Hassani A (2011). Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate. Quat Sci Rev, 30(19−20): 2732–2744
https://doi.org/10.1016/j.quascirev.2011.06.002
3 Besseling M A, Hopmans E C, Boschman R C, Sinninghe Damsté J S, Villanueva L (2018). Benthic Archaea as potential sources of tetraether membrane lipids in sediments across an oxygen minimum zone. Biogeosci, 15(13): 4047–4064
https://doi.org/10.5194/bg-15-4047-2018
4 Blaga C I, Reichart G J, Heiri O, Sinninghe Damsté J S (2009). Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J Paleolimnol, 41(3): 523–540
https://doi.org/10.1007/s10933-008-9242-2
5 Brassell S C, Eglinton G, Marlowe I T, Pflaumann U, Sarnthein M (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature, 320(6058): 129–133
https://doi.org/10.1038/320129a0
6 Dang X Y, Yang H, Naafs B D A, Pancost R D, Xie S C (2016). Evidence of moisture control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid soils. Geochim Cosmochim Acta, 189: 24–36
https://doi.org/10.1016/j.gca.2016.06.004
7 De Jonge C, Hopmans E C, Stadnitskaia A, Rijpstra W I C, Hofland R, Tegelaar E, Sinninghe Damsté J S (2013). Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org Geochem, 54(1): 78–82
https://doi.org/10.1016/j.orggeochem.2012.10.004
8 De Jonge C, Hopmans E C, Zell C I, Kim J H, Schouten S, Sinninghe Damsté J S (2014a). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim Cosmochim Acta, 141: 97–112
https://doi.org/10.1016/j.gca.2014.06.013
9 De Jonge C, Stadnitskaia A, Hopmans E C, Cherkashov G, Fedotov A, Sinninghe Damsté J S (2014b). In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate matter from the Yenisei River, Eastern Siberia. Geochim Cosmochim Acta, 125(1): 476–491
https://doi.org/10.1016/j.gca.2013.10.031
10 Deng L H, Jia G D, Jin C F, Li S J (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org Geochem, 96: 11–17
https://doi.org/10.1016/j.orggeochem.2016.03.004
11 Elling F J, Könneke M, Nicol G W, Stieglmeier M, Bayer B, Spieck E, de la Torre J R, Becker K W, Thomm M, Prosser J I, Herndl G J, Schleper C, Hinrichs K U (2017). Chemotaxonomic characterisation of the thaumarchaeal lipidome. Environ Microbiol, 19(7): 2681–2700
https://doi.org/10.1111/1462-2920.13759
12 Heller F, Liu T S (1982). Magnetostratigraphical dating of loess deposits in China. Nature, 300(5891): 431–433
https://doi.org/10.1038/300431a0
13 Hopmans E C, Weijers J W H, Schefuß E, Herfort L, Sinninghe Damsté J S, Schouten S (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet Sci Lett, 224(1–2): 107–116
https://doi.org/10.1016/j.epsl.2004.05.012
14 Huang X Y, Meyers P A, Xue J T, Gong L F, Wang X X, Xie S C (2015). Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China. Geochim Cosmochim Acta, 154(7): 212–228
https://doi.org/10.1016/j.gca.2015.01.031
15 Huguet C, Hopmans E C, Febo-Ayala W, Thompson D H, Sinninghe Damsté J S, Schouten S (2006). An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org Geochem, 37(9): 1036–1041
https://doi.org/10.1016/j.orggeochem.2006.05.008
16 Jiang H C, Mao X, Xu H Y, Thompson J, Wang P, Ma X L (2011). Last glacial pollen record from Lanzhou (Northwestern China) and possible forcing mechanisms for the MIS 3 climate change in Middle to East Asia. Quat Sci Rev, 30(5−6): 769–781
https://doi.org/10.1016/j.quascirev.2010.12.024
17 Kang S C, Wang F Y, Morgenstern U, Zhang Y L, Grigholm B, Kaspari S, Schwikowski M, Ren J W, Yao T D, Qin D H, Mayewski P A (2015). Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. Cryosphere, 9(3): 1213–1222
https://doi.org/10.5194/tc-9-1213-2015
18 Kemp D B, Robinson S A, Crame J A, Francis J E, Ineson J, Whittle R J, Bowman V, O’Brien C (2014). A cool temperate climate on the Antarctic Peninsula through the latest Cretaceous to early Paleogene. Geology, 42(7): 583–586
https://doi.org/10.1130/G35512.1
19 Lei Y Y, Yang H, Dang X Y, Zhao S J, Xie S C (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality. Org Geochem, 94: 83–94
https://doi.org/10.1016/j.orggeochem.2016.02.003
20 Leng M J, Marshall J D (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev, 23(7–8): 811–831
https://doi.org/10.1016/j.quascirev.2003.06.012
21 Lu H Y, Wu N Q, Yang X D, Jiang H, Liu K B, Liu T S (2006). Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China. I: Phytolith-based transfer functions. Quat Sci Rev, 25(9–10): 945–959
https://doi.org/10.1016/j.quascirev.2005.07.014
22 Menges J, Huguet C, Alcañiz J M, Fietz S, Sachse D, Rosell-Melé A (2014). Influence of water availability in the distributions of branched glycerol dialkyl glycerol tetraether in soils of the Iberian Peninsula. Biogeosciences, 11(10): 2571–2581
https://doi.org/10.5194/bg-11-2571-2014
23 Miranda M C C, Rossetti D F, Pessenda L C R (2009). Quaternary paleoenvironments and relative sea-level changes in Marajó Island (Northern Brazil): facies, d13C, d15N and C/N. Palaeogeogr Palaeoclimatol Palaeoecol, 282(4): 19–31
https://doi.org/10.1016/j.palaeo.2009.08.004
24 Pancost R D, McClymont E L, Bingham E M, Roberts Z, Charman D J, Hornibrook E R, Blundell A, Chambers F M, Lim K L, Evershed R P (2011). Archaeol as a methanogen biomarker in ombrotrophic bogs. Org Geochem, 42(10): 1279–1287
https://doi.org/10.1016/j.orggeochem.2011.07.003
25 Pancost R D, Taylor K W R, Inglis G N, Kennedy E M, Handley L, Hollis C J, Crouch E M, Pross J, Huber M, Schouten S, Pearson P N, Morgans H E G, Raine J I (2013). Early Paleogene evolution of terrestrial climate in the SW Pacific, Southern New Zealand. Geochem Geophys Geosyst, 14(12): 5413–5429
https://doi.org/10.1002/2013GC004935
26 Pearson A, Huang Z, Ingalls A E, Romanek C S, Wiegel J, Freeman K H, Smittenberg R H, Zhang C L (2004). Nonmarine crenarchaeol in Nevada hot springs. Appl Environ Microbiol, 70(9): 5229–5237
https://doi.org/10.1128/AEM.70.9.5229-5237.2004
27 Pearson A, Pi Y D, Zhao W D, Li W J, Li Y L, Inskeep W, Perevalova A, Romanek C, Li S G, Zhang C L (2008). Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Appl Environ Microbiol, 74(11): 3523–3532
https://doi.org/10.1128/AEM.02450-07
28 Pendall E, Markgraf V, White J W C, Dreier M, Kenny R (2001). Multiproxy record of Late Pleistocene Holocene climate and vegetation changes from a peat bog in Patagonia. Quat Res, 55(2): 168–178
https://doi.org/10.1006/qres.2000.2206
29 Peterse F, Prins M A, Beets C J, Troelstra S R, Zheng H B, Gu Z Y, Schouten S, Sinninghe Damsté J S (2011). Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth Planet Sci Lett, 301(1–2): 256–264
https://doi.org/10.1016/j.epsl.2010.11.010
30 Peterse F, van der Meer J, Schouten S, Weijers J W H, Fierer N, Jackson R B, Kim J H, Sinninghe Damsté J S (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochim Cosmochim Acta, 96(11): 215–229
https://doi.org/10.1016/j.gca.2012.08.011
31 Schouten S, Hopmans E C, Sinninghe Damsté J S (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org Geochem, 54(1): 19–61
https://doi.org/10.1016/j.orggeochem.2012.09.006
32 Sinninghe Damsté J S, Ossebaar J, Schouten S, Verschuren D (2012). Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat Sci Rev, 50(6): 43–54
https://doi.org/10.1016/j.quascirev.2012.07.001
33 Sinninghe Damsté J S, Rijpstra W I, Hopmans E C, Foesel B U, Wust P K, Overmann J, Tank M, Bryant D A, Dunfield P F, Houghton K, Stott M B (2014). Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4. Appl Environ Microbiol, 80(17): 5207–5218
https://doi.org/10.1128/AEM.01066-14
34 Tang C Y, Yang H, Dang X Y, Xie S C (2017). Comparison of paleotemperature reconstructions using microbial tetraether thermometers of the Chinese loess-paleosol sequence for the past 350000 years. Sci China Earth Sci, 60(6): 1159–1170
https://doi.org/10.1007/s11430-016-9035-y
35 ter Braak C J F, Smilauer P (2002). CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Ithaca, NY, USA. 500
36 Thomas E K, Clemens S C, Sun Y B, Prell W L, Huang Y S, Gao L, Loomis S, Chen G S, Liu Z Y (2016). Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth Planet Sci Lett, 455: 196–206
https://doi.org/10.1016/j.epsl.2016.09.044
37 Thornton S F, McManus J (1994). Application of organic carbon and nitrogen stable isotope and C/N Ratios as source indicators of organic matter provenance in estuarine systems: evidence from the Tay Estuary, Scotland. Estuar Coast Shelf Sci, 38(3): 219–233
https://doi.org/10.1006/ecss.1994.1015
38 Újvári G, Kok J F, Varga G, Kovács J (2016). The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth Sci Rev, 154: 247–278
https://doi.org/10.1016/j.earscirev.2016.01.006
39 Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández R, Enríquez-Aragón J, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles, 12(2): 247–254
https://doi.org/10.1007/s00792-007-0121-y
40 Wang H Y, Liu W G, Lu H X (2016). Appraisal of branched glycerol dialkyl glycerol tetraether-based indices for North China. Org Geochem, 98: 118–130
https://doi.org/10.1016/j.orggeochem.2016.05.013
41 Wang H Y, Liu W G, Zhang C L (2014). Dependence of the cyclization of branched tetraethers on soil moisture in alkaline soils from arid-subhumid China: implications for palaeorainfall reconstructions on the Chinese Loess Plateau. Biogeosciences, 11(23): 6755–6768
https://doi.org/10.5194/bg-11-6755-2014
42 Wang H Y, Liu W G, Zhang C L, Jiang H C, Dong H L, Lu H X, Wang J X (2013). Assessing the ratio of archaeol to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai-Tibetan Plateau. Org Geochem, 54: 69–77
https://doi.org/10.1016/j.orggeochem.2012.09.011
43 Wang Y J, Cheng H, Edwards R L, Kong X G, Shao X H, Chen S T, Wu J Y, Jiang X Y, Wang X F, An Z S (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182): 1090–1093
https://doi.org/10.1038/nature06692
44 Weijers J W H, Schouten S, Hopmans E C, Geenevasen J A J, David O R P, Coleman J M, Pancost R D, Sinninghe Damste J S (2006a). Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ Microbiol, 8(4): 648–657
https://doi.org/10.1111/j.1462-2920.2005.00941.x
45 Weijers J W H, Schouten S, Spaargaren O C, Sinninghe Damsté J S (2006b). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Org Geochem, 37(12): 1680–1693
https://doi.org/10.1016/j.orggeochem.2006.07.018
46 Weijers J W H, Schouten S, van den Donker J C, Hopmans E C, Sinninghe Damsté J S (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochim Cosmochim Acta, 71(3): 703–713
https://doi.org/10.1016/j.gca.2006.10.003
47 Willard D A, Weimer L M, Riegel W L (2001). Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Rev Palaeobot Palynol, 113(4): 213–235
https://doi.org/10.1016/S0034-6667(00)00042-7
48 Wu F L, Fang X M, Ma Y Z, Herrmann M, Mosbrugger V, An Z, Miao Y (2007). Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet Sci Lett, 257(1–2): 160–169
https://doi.org/10.1016/j.epsl.2007.02.029
49 Xie S C, Pancost R D, Chen L, Evershed R P, Yang H, Zhang K X, Huang J H, Xu Y D (2012). Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of the Tibetan Plateau in the Late Miocene. Geology, 40(4): 291–294
https://doi.org/10.1130/G32570.1
50 Yang H, Lü X X, Ding W H, Lei Y Y, Dang X Y, Xie S C (2015a). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia. Org Geochem, 82: 42–53
https://doi.org/10.1016/j.orggeochem.2015.02.003
51 Yang H, Pancost R D, Dang X Y, Zhou X Y, Evershed R P, Xiao G Q, Tang C Y, Gao L, Guo Z T, Xie S C (2014). Correlations between microbial tetraether lipids and environmental variables in Chinese soils: optimizing the paleo-reconstructions in semi-arid and arid regions. Geochim Cosmochim Acta, 126: 49–69
https://doi.org/10.1016/j.gca.2013.10.041
52 Yang H, Pancost R D, Jia C L, Xie S C (2016). The response of archaeal tetraether membrane lipids in surface soils to temperature: a potential paleothermometer in paleosols. Geomicrobiol J, 33(2): 98–109
https://doi.org/10.1080/01490451.2014.1002956
53 Yang H, Xiao W J, Jia C L, Xie S (2015b). Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils. Front Earth Sci, 9(1): 13–25
https://doi.org/10.1007/s11707-014-0464-5
54 Zielinski U, Gersonde R (1997). Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol, 129(3–4): 213–250
https://doi.org/10.1016/S0031-0182(96)00130-7
[1] Yanhong LI, Mingliang ZHAO, Fadong LI. Soil respiration in typical plant communities in the wetland surrounding the high-salinity Ebinur Lake[J]. Front. Earth Sci., 2018, 12(3): 611-624.
[2] Jiali CHEN, Pengju HU, Xing LI, Yang YANG, Jinming SONG, Xuegang LI, Huamao YUAN, Ning LI, Xiaoxia LÜ. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas[J]. Front. Earth Sci., 2018, 12(1): 95-107.
[3] Menglu ZHANG, Baoshan CUI, Zhiming ZHANG, Xuelian JIANG. Salinity-oriented environmental flows for keystone species in the Modaomen Estuary, China[J]. Front. Earth Sci., 2017, 11(4): 670-681.
[4] Asma AYARI, Huan YANG, Shucheng XIE. Flooding impact on the distribution of microbial tetraether lipids in paddy rice soil in China[J]. Front Earth Sci, 2013, 7(3): 384-394.
[5] Yucen LU, Yongming SHEN. Influence of bathymetry evolution on position of tidal shear front and hydrodynamic characteristics around the Yellow River estuary[J]. Front Earth Sci, 2012, 6(4): 405-419.
[6] Qi FENG, Haiyang XI, Wei LIU, . Relationship between soil physiochemistry and land degradation in the lower Heihe River basin of northwestern China[J]. Front. Earth Sci., 2009, 3(4): 490-499.
[7] ISLAM Shafi Noor, GNAUCK Albrecht. Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh[J]. Front. Earth Sci., 2008, 2(4): 439-448.
[8] ISLAM Shafi Noor, GNAUCK Albrecht. Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh[J]. Front. Earth Sci., 2008, 2(4): 443-452.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed