Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (1) : 81-93    https://doi.org/10.1007/s11707-020-0852-y
REVIEW ARTICLE
The frontier evolution and emerging trends of hydrological connectivity in river systems: a scientometric review
Bowen LI1,2, Zhifeng YANG1,2, Yanpeng CAI1,2(), Bo LI1,2
1. Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
 Download: PDF(2819 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the intensification of climate change and human activities, the watershed ecosystem is seriously fragmented, which leads to the obstruction of hydrological connectivity, and further causes the degradation of the ecosystem. As the value of wetlands continues to be exploited, hydrological connectivity becomes increasingly significant. In this paper, the characteristics and development of hydrological connectivity research from 1998 to 2018 were analyzed through the scientometric analysis based on Web of Science database. CiteSpace, an analytical software for scientific measurement, is used to visualize the results of the retrieval. The analysis results of co-occurrence, co-operative and co-cited network indicate that the hydrological connectivity is a multidisciplinary field which involves the Environment Science and Ecology, Water Resources, Environmental Sciences, Geology and Geosciences. According to Keyword co-occurrence analysis, ecosystem, floodplain, dynamics, climate change and management are the main research hotspots in each period. In addition, the co-cited analysis of references shows that “amphibians” is the largest cluster of hydrological connectivity, and the “channel network” is the most important research topic. It is worth noting that the “GIWS” (Geographically Isolated Wetlands) is the latest research topic and may be a major research direction in the future.

Keywords hydrological connectivity      citespace      ecosystem      geographically isolated wetlands     
Corresponding Author(s): Yanpeng CAI   
Online First Date: 26 March 2021    Issue Date: 19 April 2021
 Cite this article:   
Bowen LI,Zhifeng YANG,Yanpeng CAI, et al. The frontier evolution and emerging trends of hydrological connectivity in river systems: a scientometric review[J]. Front. Earth Sci., 2021, 15(1): 81-93.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0852-y
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I1/81
Fig.1  Publication output performance during 1998-2018.
Fig.2  Subject category network for hydrological connectivity during 1998-2018.
Rank Subject category Frequency Centrality
1 Environmental Sciences & Ecology 1413 0.08
2 Water Resources 1135 0.13
3 Environmental Sciences 1029 0.28
4 Geology 847 0.03
5 Geosciences, Multidisciplinary 807 0.21
6 Marine & Freshwater Biology 606 0.12
7 Ecology 600 0.19
8 Engineering 409 0.13
9 Limnology 280 0.03
10 Physical Geography 252 0.19
11 Geography, Physical 252 0
12 Engineering, Civil 216 0
13 Agriculture 153 0.12
14 Engineering, Environmental 144 0.09
15 Biodiversity & Conservation 111 0.24
Tab.1  Subject categories for hydrological connectivity over 1998 to 2018
Rank Journals N (%) IF Co-cited journals N IF
1 Hydrological Processes 193 (5.8) 3.189 Hydrological Processes 1585 3.189
2 Journal of Hydrology 149 (4.5) 4.405 Journal of Hydrology 1561 4.405
3 Water Resources Research 139 (4.2) 4.142 Water Resources Research 1517 4.142
4 Freshwater Biology 79 (2.4) 3.404 Freshwater Biology 1137 3.404
5 River Research and Applications 75 (2.3) 1.954 Science 1109 41.037
6 Hydrobiologia 72 (2.2) 2.325 Hydrobiologia 954 2.325
7 Hydrology and Earth System Scien 66 (2.0) 4.936 Ecology 913 4.285
8 Geomorphology 63 (1.9) 3.681 Nature 906 43.07
9 Wetlands 56 (1.7) 1.854 Bioscience 836 6.591
10 Science of the Total Environment 53 (1.6) 5.589 Hydrology and Earth System Scien 753 4.936
Tab.2  The top 10 journals and co-cited journals for hydrological connectivity over 1998 to 2018
Fig.3  Co-cited journals network for hydrological connectivity during 1998-2018.
Fig.4  Keywords network for hydrological connectivity during 1998-2004.
Fig.5  Keywords network for hydrological connectivity during 2005-2011.
Fig.6  Keywords network for hydrological connectivity during 2012-2018.
Fig.7  Author co-cited network for hydrological connectivity during 1998-2018.
1998–2004 2005–2011 2012–2018
Keyword Frequency Centrality Keyword Frequency Centrality Keyword Frequency Centrality
ecosystem 57 0.13 connectivity 133 0.11 hydrological connectivity 370 0.27
Connectivity 53 0.10 ecosystem 114 0.04 Connectivity 362 0.11
wetland 23 0.27 hydrological connectivity 108 0.19 Ecosystem 218 0.11
floodplain 23 0.12 Water 73 0.11 climate change 213 0.05
biodiversity 22 0.12 hydrology 69 0.02 river 198 0.10
stream 20 0.16 wetland 64 0.08 pattern 183 0.12
model 20 0.14 river 63 0.10 water 182 0.06
groundwater 19 0.08 model 63 0.14 model 163 0.11
hydrology 18 0.12 Stream 58 0.04 dynamics 161 0.05
Runoff 17 0.24 Flow 56 0.06 management 140 0.11
Water 16 0.09 Dynamics 54 0.16 flow 137 0.09
Flow 16 0.04 Pattern 54 0.09 Runoff 136 0.04
Restoration 15 0.15 Groundwater 54 0.07 Stream 136 0.17
Dynamics 14 0.16 Floodplain 52 0.08 Biodiversity 130 0.07
Ecology 14 0.05 Catchment 49 0.11 Impact 129 0.09
Tab.3  Keywords for hydrological connectivity over periods of 1998 to 2004, 2005 to 2011, and 2012 to 2018.
Cited authors Year Strength Begin End 1998–2018
Bracken L J 1998 26.67 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃
Tetzlaff D 1998 21.2137 2013 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃▃
Schiemer F 1998 17.6171 1999 2009 ▂▃▃▃▃▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂
Jencso K G 1998 17.2929 2014 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▃
Mcdonnell J J 1998 16.4053 2015 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃
Hein T 1998 16.0482 2003 2009 ▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂
Allan J D 1998 15.2731 2016 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃
Bunn S E 1998 14.6637 2012 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂
Mcglynn B L 1998 14.3745 2014 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂
Palmer M A 1998 13.8234 2014 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂
Petts G E 1998 13.5599 1998 2004 ▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂
Winter T C 1998 13.4082 2016 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃
Kirchner J W 1998 13.362 2015 2016 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂
Thorp J H 1998 13.2829 2003 2009 ▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂▂▂▂
Tromp-van M H J 1998 13.1571 2010 2011 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂
Tab.4  Top 15 Cited Authors with the Strongest Citation Bursts for hydrological connectivity over 1998 to 2018
Fig.8  References co-cited network and main references cluster for hydrological connectivity during 1998-2018.
Fig.9  Timeline visualization of main references cluster for hydrological connectivity during 1998-2018
1 B G W Aarts, F W B Van Den Brink, P H Nienhuis (2004). Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient. River Res Appl, 20(1): 3–23
https://doi.org/10.1002/rra.720
2 G Ali, A G Roy (2009). Revisiting hydrologic sampling strategies for an accurate assessment of hydrologic connectivity in humid temperate systems. Geogr Compass, 3(1): 350–374
https://doi.org/10.1111/j.1749-8198.2008.00180.x
3 F Altermatt, M Seymour, N Martinez (2013). River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J Biogeogr, 40(12): 2249
https://doi.org/10.1111/jbi.12178
4 L J Bracken, J Wainwright, G A Ali, D Tetzlaff, M W Smith, S M Reaney, A G Roy (2013). Concepts of hydrological connectivity: research approaches, pathways and future agendas. Earth Sci Rev, 119: 17–34
https://doi.org/10.1016/j.earscirev.2013.02.001
5 L Bracken, J Croke (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. Hydrol Processes, 21(13): 1749
https://doi.org/10.1002/hyp.6313
6 F Carrara, F Altermatt, I Rodriguez-Iturbe, A Rinaldo (2012). Dendritic connectivity controls biodiversity patterns in experimental metacommunities. Proc Natl Acad Sci USA, 109(15): 5761–5766
https://doi.org/10.1073/pnas.1119651109 pmid: 22460788
7 M Chadwick (2008). Stream ecology: structure and function of running waters. Freshw Biol, 53(9): 1914
https://doi.org/10.1111/j.1365-2427.2008.01997.x
8 III F S Chapin, E S Zavaleta, V T Eviner, R L Naylor, H L Reynolds, D U Hooper, S Lavorel, O E Sala, S E Hobbie, M C Mack, S Díaz, D Sandra (2000). Consequences of changing biodiversity. Nature, 405(6783): 234–242
https://doi.org/10.1038/35012241 pmid: 10821284
9 C Chen (2004). Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA, 101(Suppl 1): 5303–5310
https://doi.org/10.1073/pnas.0307513100 pmid: 14724295
10 C Chen (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol, 57(3): 359–377
https://doi.org/10.1002/asi.20317
11 A Chovanec, J Waringer (2001). Ecological integrity of river-floodplain systems-assessment by dragonfly surveys (Insecta: Odonata). Regul Rivers Res Manage, 17(4–5): 493–507
https://doi.org/10.1002/rrr.664
12 M Costa, B Aurélie, C Jeffrey (2002). Effects of large-scale changes in land cover and climate variability in the discharge of the Tocantins River. In: AGU Fall Meeting
13 I Creed, L Band (1998). Exploring functional similarity in the export of nitrate-n from forested catchments: a mechanistic modeling approach. Water Resour Res, 34(11): 3079–3093
https://doi.org/10.1029/98WR02102
14 J Croke, S Mockler, P Fogarty, I Takken (2005). Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity. Geomorphology, 68(3-4): 257–268
https://doi.org/10.1016/j.geomorph.2004.11.020
15 X Cui, X Guo, Y Wang, X Wang, W Zhu, J Shi, C Lin, X Gao (2019). Application of remote sensing to water environmental processes under a changing climate. J Hydrol (Amst), 574: 892–902
https://doi.org/10.1016/j.jhydrol.2019.04.078
16 A Elmore, S S Kaushal (2008). Disappearing headwaters: patterns of stream burial due to urbanization. Front Ecol Environ, 6(6): 308–312
https://doi.org/10.1890/070101
17 F García-Lillo, M Úbeda-García, B Marco-Lajara, Bartolomé (2016). Organizational ambidexterity: exploring the knowledge base. Scientometrics, 107(3): 1021–1040
https://doi.org/10.1007/s11192-016-1897-2
18 B Gumiero, J Mant, T Hein, J Elso, B Boz (2013). Linking the restoration of rivers and riparian zones/wetlands in Europe: Sharing knowledge through case studies. Ecol Eng, 56: 36–50
https://doi.org/10.1016/j.ecoleng.2012.12.103
19 J Hooke (2003). Coarse sediment connectivity in river channel systems: A conceptual framework and methodology. Geomorphology, 56(1–2): 79–94
https://doi.org/10.1016/S0169-555X(03)00047-3
20 T Stocker, D Qin, G, Plattner M Tignor, S Allen, J Boschung, A Nauels, Y Xia, V Bex, P Midgley (2013). IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
https://doi.org/10.1017/CBO9781107415324
21 L Kaufman, P Rousseeuw (1990). Partitioning boids (Program PAM). In: Finding Groups in Data: An Introduction to Cluster Analysis. 344: 68–125
22 A Kaus, S Michalski, B Hänfling, D Karthe, D Borchardt, W Durka (2019). Fish conservation in the land of steppe and sky: Evolutionarily significant units of threatened salmonid species in Mongolia mirror major river basins. Ecol Evol, 9(6): 3416–3433
https://doi.org/10.1002/ece3.4974 pmid: 30962902
23 C Knudby, J Carrera (2005). On the relationship between indicators of geostatistical, flow and transport connectivity. Adv Water Resour, 28(4): 405–421
https://doi.org/10.1016/j.advwatres.2004.09.001
24 S Lane, C J Brookes, M Kirkby, J Holden (2004). A network-indexbased version of TOPMODEL for use with high-resolution digital topographic data. Hydrol Processes, 18(1): 191–201
https://doi.org/10.1002/hyp.5208
25 C Liang, A Luo, Z Zhong (2018). Knowledge mapping of medication literacy study: a visualized analysis using CiteSpace. SAGE Open Med, 6: 2050312118800199
https://doi.org/10.1177/2050312118800199 pmid: 30245817
26 J Liu, B A Engel, Y Wang, G Zhang, Z Zhang, M Zhang (2020). Multi-scale analysis of hydrological connectivity and plant response in the Yellow River Delta. Sci Total Environ, 702: 134889
https://doi.org/10.1016/j.scitotenv.2019.134889 pmid: 31733556
27 W Lowe (2006). The trouble with rivers. Bioscience, 56(3): 260–263
https://doi.org/10.1641/0006-3568(2006)056[0260:TTWR]2.0.CO;2
28 Y Malhi, J T Roberts, R A Betts, T J Killeen, W Li, C A Nobre (2008). Climate change, deforestation, and the fate of the Amazon. Science, 319(5860): 169–172
https://doi.org/10.1126/science.1146961 pmid: 18048654
29 P A Matson, W J Parton, A G Power, M J Swift (1997). Agricultural intensification and ecosystem properties. Science, 277(5325): 504–509
https://doi.org/10.1126/science.277.5325.504 pmid: 20662149
30 B Meng, J L Liu, K Bao, B Sun (2020). Methodologies and management framework for restoration of wetland hydrologic connectivity: a synthesis. Integr Environ Assess Manag, 16(4): 438–451
https://doi.org/10.1002/ieam.4256 pmid: 32100941
31 K Obolewski (2011). Macrozoobenthos Patterns along Environmental Gradients and Hydrological Connectivity of Oxbow Lakes. Ecol Eng, 37(5): 796–805
https://doi.org/10.1016/j.ecoleng.2010.06.037
32 C J Ocampo, M Sivapalan, C Oldham (2006). Hydrological connectivity of upland-riparian zones in agricultural catchments: implications for runoff generation and nitrate transport. J Hydrol (Amst), 331(3–4): 643–658
https://doi.org/10.1016/j.jhydrol.2006.06.010
33 W Ouyang, Y Wang, C Lin, M He, F Hao, H Liu, W Zhu (2018). Heavy metal loss from agricultural watershed to aquatic system: a scientometrics review. Sci Total Environ, 637-638: 208–220
https://doi.org/10.1016/j.scitotenv.2018.04.434 pmid: 29751304
34 I C Phillipsen, E H Kirk, M T Bogan, M C Mims, J D Olden, D A Lytle (2015). Dispersal ability and habitat requirements determine landscape-level genetic patterns in desert aquatic insects. Mol Ecol, 24(1): 54–69
pmid: 25402260
35 C Pringle (2001). Hydrologic connectivity and the management of biological reserves: a global perspective. Ecol Appl, 11(4): 981–998
https://doi.org/10.1890/1051-0761(2001)011[0981:HCATMO]2.0.CO;2
36 C Pringle (2003). What is hydrologic connectivity and Why is it ecologically important? Hydrol Processes, 17(13): 2685–2689
https://doi.org/10.1002/hyp.5145
37 E K Read, V P Patil, S K Oliver, A L Hetherington, J A Brentrup, J A Zwart, K M Winters, J R Corman, E R Nodine, R I Woolway, H A Dugan, A Jaimes, A B Santoso, G S Hong, L A Winslow, P C Hanson, K C Weathers (2015). The importance of lake-specific characteristics for water quality across the continental United States. Ecol Appl, 25(4): 943–955
https://doi.org/10.1890/14-0935.1 pmid: 26465035
38 M Seymour, E A Fronhofer, F Altermatt (2015). Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos, 124(7): 908–916
https://doi.org/10.1111/oik.02354
39 X Shao, Y Fang, J W Jawitz, J Yan, B Cui (2019). River network connectivity and fish diversity. Sci Total Environ, 689: 21–30
https://doi.org/10.1016/j.scitotenv.2019.06.340 pmid: 31260896
40 M Stieglitz, J Shaman, J McNamara, V Engel, J Shanley, G Kling (2003). An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochem Cycles, 17(4): 17
https://doi.org/10.1029/2003GB002041
41 Tan, T Zhang(2018). Robust fractional programming approach for improving agricultural water-use efficy under uncertainty. J Hydrol, 567: 1110–1119
https://doi.org/10.1016/j.jhydrol.2018.07.080
42 D Tetzlaff, C Soulsby, P J Bacon, A F Youngson, C Gibbins, I A Malcolm (2007). Connectivity between landscapes and riverscapes—a unifying theme in integrating hydrology and ecology in catchment science? Hydrol Processes, 21(10): 1385–1389
https://doi.org/10.1002/hyp.6701
43 R L Vannote, G W Minshall, K Cummins, J R Sedell, C E Cushing (1980). The river continuum concept. Can J Fish Aquat Sci, 37(1): 130–137
https://doi.org/10.1139/f80-017
44 P Vidon, A R Hill (2004). Landscape controls on nitrate removal in stream riparian zones. Water Resour Res, 40(3): 40
https://doi.org/10.1029/2003WR002473
45 J Ward (1989). The four dimensional nature of lotic ecosystems. J N Am Benthol Soc, 8(1): 2–8
https://doi.org/10.2307/1467397
46 P Xie (2015). Study of international anticancer research trends via co-word and document co-citation visualization analysis. Scientometrics, 105(1): 611
https://doi.org/10.1007/s11192-015-1689-0
47 S Yang, J Sui, T Liu, W Wu, S Xu, L Yin, Y Pu, X Zhang, Y Zhang, B Shen, G Liang (2018). Trends on PM2.5 research, 1997–2016: a bibliometric study. Environ Sci Pollut Res Int, 25(13): 12284–12298
https://doi.org/10.1007/s11356-018-1723-x pmid: 29623642
48 D J Yu (2015). A scientometrics review on aggregation operator research. Scientometrics, 105(1): 115–133
https://doi.org/10.1007/s11192-015-1695-2
49 D J Yu, Z S Xu, W Pedrycz, W R Wang (2017). Information sciences 1968–2016: a retrospective analysis with text mining and bibliometric. Inf Sci, 418–419: 619–634
https://doi.org/10.1016/j.ins.2017.08.031
50 M Zhang, M Gao, S Yue, T Zheng, Z Gao, X Ma, Q Wang (2018). Global tr ends and future prospects of food waste research: a bibliometric analysis. Environ Sci Pollut Res Int, 25(25): 24600–24610
https://doi.org/10.1007/s11356-018-2598-6 pmid: 30014369
51 S Zhang, Q Tan, Y Cai, T Zhang, G Song (2019). Mathematical analyses of ecological and economic tradeoffs in irrigated agriculture based on inexact optimization principles and hierarchical crop projections. J Clean Prod, 235: 69–84
https://doi.org/10.1016/j.jclepro.2019.06.165
[1] FES-20852-OF-LBW_suppl_1 Download
[1] Xujun HU, Huiyuan ZHANG, Haiguang HAO, Danyang FENG, Haiyan LIU, Qiang ZHANG. Understanding the relationships between poverty alleviation and ecosystem conservation: empirical evidence from western China[J]. Front. Earth Sci., 2020, 14(1): 209-220.
[2] Jonathan R. STRAUBE, Maosi CHEN, William J. PARTON, Shinichi ASSO, Yan-An LIU, Dennis S. OJIMA, Wei GAO. Development of the DayCent-Photo model and integration of variable photosynthetic capacity[J]. Front. Earth Sci., 2018, 12(4): 765-778.
[3] Na ZHAO, Mengzhen XU, Zhiwei LI, Zhaoyin WANG, Hanmi ZHOU. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region[J]. Front. Earth Sci., 2017, 11(3): 554-564.
[4] Hui ZHANG, Qiao WANG, Guangyu LI, Hanpei ZHANG, Jue ZHANG. Losses of Ecosystem Service Values in the Taihu Lake Basin from 1979 to 2010[J]. Front. Earth Sci., 2017, 11(2): 310-320.
[5] Junyong AI,Lan FENG,Xiaowei DONG,Xiaodong ZHU,Yangfan LI. Exploring coupling coordination between urbanization and ecosystem quality (1985–2010): a case study from Lianyungang City, China[J]. Front. Earth Sci., 2016, 10(3): 527-545.
[6] Junyong AI,Xiang SUN,Lan FENG,Yangfan LI,Xiaodong ZHU. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China[J]. Front. Earth Sci., 2015, 9(3): 531-545.
[7] Meirong SU, Chen CHEN, Weiwei LU, Gengyuan LIU, Zhifeng YANG, Bin CHEN. Urban public health assessment and pattern analysis: comparison of four cities in different countries[J]. Front Earth Sci, 2013, 7(2): 191-198.
[8] Jin YANG, Weichao CHEN, Bin CHEN. Impacts of biogas projects on agro-ecosystem in rural areas----A case study of Gongcheng[J]. Front Earth Sci, 2011, 5(3): 317-322.
[9] Wujun WEN, Geng XU, Xingjie WANG. Spatial transferring of ecosystem services and property rights allocation of ecological compensation[J]. Front Earth Sci, 2011, 5(3): 280-287.
[10] Yongbiao WANG, Zheng MENG, Wei LIAO, Zeting WENG, Hao YANG. Shallow marine ecosystem feedback to the Permian/Triassic mass extinction[J]. Front Earth Sci, 2011, 5(1): 14-22.
[11] Shafi Noor ISLAM. Threatened wetlands and ecologically sensitive ecosystems management in Bangladesh[J]. Front Earth Sci Chin, 2010, 4(4): 438-448.
[12] Brian FINLAYSON. Rivers in Australia[J]. Front Earth Sci Chin, 2010, 4(4): 375-385.
[13] R. B. WENGER, H. J. HARRIS. The Green Bay ecosystem and assessment of climate change impacts[J]. Front. Earth Sci., 2010, 4(3): 326-332.
[14] James P. LASSOIE, Ruth E. SHERMAN. Promoting a coupled human and natural systems approach to addressing conservation in complex mountainous landscapes of Central Asia[J]. Front. Earth Sci., 2010, 4(1): 67-82.
[15] Shikui DONG, Lu WEN, Lei ZHU, Xiaoyan LI, . Implication of coupled natural and human systems in sustainable rangeland ecosystem management in HKH region[J]. Front. Earth Sci., 2010, 4(1): 42-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed