Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (1) : 90-98    https://doi.org/10.1007/s11707-021-0887-8
RESEARCH ARTICLE
High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR
He FANG1,2, William PERRIE4, Gaofeng FAN1, Zhengquan LI1, Juzhen CAI1, Yue HE1, Jingsong YANG2, Tao XIE5, Xuesong ZHU3()
1. Zhejiang Climate Centre, Hangzhou 310017, China
2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
3. Shanghai Typhoon Institute, and Key Laboratory of Numerical Modeling for Tropical Cyclone of China Meteorological Administration, Shanghai 200030, China
4. Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth B2Y4A2, Canada
5. School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
 Download: PDF(1596 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gaofen-3 (GF-3) is the first Chinese spaceborne multi-polarization synthetic aperture radar (SAR) instrument at C-band (5.43 GHz). In this paper, we use data collected from GF-3 to observe Super Typhoon Lekima (2019) in the East China Sea. Using a VH-polarized wide ScanSAR (WSC) image, ocean surface wind speeds at 100m horizontal resolution are obtained at 21:56:59 UTC on 8 August 2019, with the maximum wind speed, 38.9 m·s−1. Validating the SAR-retrieved winds with buoy-measured wind speeds, we find that the root mean square error (RMSE) is 1.86 m·s−1, and correlation coefficient, 0.92. This suggests that wind speeds retrieved from GF-3 SAR are reliable. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) fine grid operational forecast products with spatial resolution, and China Global/Regional Assimilation and Prediction Enhance System (GRAPES) have good performances on surface wind prediction under weak wind speed condition (<24 m·s−1), but underestimate the maximum wind speed when the storm is intensified as a severe tropical storm (>24 m·s−1). With respect to SAR-retrieved wind speeds, the RMSEs are 5.24 m·s−1 for ECMWF and 5.17 m·s−1 for GRAPES, with biases of 4.16 m·s−1 for ECMWF and 3.84 m·s−1 for GRAPES during Super Typhoon Lekima (2019).

Keywords synthetic aperture radar      wind speed      numerical weather predication (NWP)      typhoon     
Corresponding Author(s): Xuesong ZHU   
Just Accepted Date: 18 March 2021   Online First Date: 26 March 2021    Issue Date: 04 March 2022
 Cite this article:   
He FANG,William PERRIE,Gaofeng FAN, et al. High-resolution sea surface wind speeds of Super Typhoon Lekima (2019) retrieved by Gaofen-3 SAR[J]. Front. Earth Sci., 2022, 16(1): 90-98.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0887-8
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I1/90
Fig.1  (a)The track and entire life of Super Typhoon Lekima (2019) according to the best-track in China Meteorological Administration. The green, blue, yellow, orange, purple, and red colors represent its different phases as a tropical depression, tropical storm, severe tropical storm, typhoon, severe typhoon and super typhoon, respectively; (b) collocated GF-3 SAR raw image using VH-polarized mode over the East China Sea on 8 August 2019, at 21:56:59 UTC. The red square represents the typhoon center area.
Fig.2  Flowchart of the space matching algorithm between NWP models and the SAR image.
Fig.3  (a) In situ buoy locations and (b) GRAPES model system grid cells falling within the SAR image. White ‘*’ denotes buoys and blue ‘+’ represents GRAPES model data.
Data subset Acquired time (UTC) Spatial resolution Grid cells in SAR
GF-3 SAR 21:56:59 1km×1km /
Buoys 21:30 / 12
GRAPES 21:00:00 0.25º×0.25 278
ECMWF 0.125 º×0.125 º 1028
Tab.1  Detailed information on data subset on 8August, 2019
Fig.4  Ocean surface wind speed retrieved from the GF-3 SAR image using the QPS-CP model at VH-polarization for Super Typhoon Lekima (2019).
Fig.5  Ocean surface wind speeds retrieved from the GF-3 SAR image vs in situ buoy measurements.
Buoy ID Buoy wind SAR wind Bias Buoy ID Buoy wind SAR wind Bias
B1 13.2 15.84 2.64 B7 17.5 19.01 1.51
B2 20.11 17.23 2.88 B8 21.3 21.91 0.61
B3 22.45 21.21 1.24 B9 23.9 22.58 1.32
B4 20.61 18.26 2.35 B10 17.7 19.51 1.81
B5 16.7 18.51 1.81 B11 17.3 18.95 1.65
B6 6.64 8.95 2.31 B12 16.7 17.15 0.45
Tab.2  Wind speed retrieved from GF-3 SAR image compared with buoy measurements (unit: m·s−1)
Fig.6  (a) ECMWF and (b) GRAPES model winds under Super Typhoon Lekima (2019) on 8 August at 21:00 UTC. The black boxes show the GF-3 footprint related to the scene collected at 21:56:59 UTC.
Fig.7  SAR-retrieved wind speeds from the SAR image versus (a) ECMWF and (b) GRAPES models for 0~24.4 m·s−1 winds, and (c) ECMWF and (d) GRAPES models for winds greater than 24.5 m·s−1.
1 R B Alley, K A Emanuel, F Zhang (2019). Advances in weather prediction. Science, 363(6425): 342–344
https://doi.org/10.1126/science.aav7274 pmid: 30679358
2 S Buchanan, V Misra, A Bhardwaj (2018). Integrated kinetic energy of Atlantic tropical cyclones in a global ocean surface wind analysis. Int J Climatol, 38(6): 2651–2661
https://doi.org/10.1002/joc.5450
3 J P Cangialosi, T B Kimberlain, J L Beven II, M Demaria (2015). The validity of dvorak intensity change constraints for tropical cyclones. Weather Forecast, 30(4): 1010–1015
https://doi.org/10.1175/WAF-D-15-0028.1
4 K H Chou, C C Wu, S Z Lin (2013). Assessment of the ASCAT wind error characteristics by global dropwindsonde observations. J Geophys Res Atmos, 118(16): 9011–9021
https://doi.org/10.1002/jgrd.50724
5 M Deng, G Zhang, R Zhao, S Li, J Li (2017). Improvement of gaofen-3 absolute positioning accuracy based on cross-calibration. Sensors (Basel), 17(12): 2903
https://doi.org/10.3390/s17122903 pmid: 29240675
6 H Fang, T Xie, W Perrie, G Zhang, J Yang, Y He (2018). Comparison of C-band quad-polarization synthetic aperture radar wind retrieval models. Remote Sens, 10(9): 1448
https://doi.org/10.3390/rs10091448
7 Y Gao, C Guan, J Sun, L Xie (2019). A wind speed retrieval model for Sentinel-1A EW mode cross-polarization images. Remote Sens, 11(2): 153
https://doi.org/10.3390/rs11020153
8 P A Hwang, A Stoffelen, G J van Zadelhoff, W Perrie, B Zhang, H Li, H Shen (2015). Cross-polarization geophysical model function for C-band radar backscattering from the ocean surface and wind speed retrieval. J Geophys Res Oceans, 120(2): 893–909
https://doi.org/10.1002/2014JC010439
9 X Huang, X Peng, J Fei, X Cheng, J Ding, D Yu (2021). Evaluation and error analysis of official tropical cyclone intensity forecasts during 2005–2018 for the western North Pacific. J Meteorol Soc Jpn, 99
https://doi.org/10.2151/jmsj.2021-008
10 Q Jin, X Fan, J Liu, Z Xue, H Jian (2020). Estimating tropical cyclone intensity in the South China Sea using the XGBoost Model and FengYun Satellite images. Atmosphere, 11(4): 423
https://doi.org/10.3390/atmos11040423
11 A S Komarov, V Zabeline, D G Barber (2014). Ocean surface wind speed retrieval from C-band SAR images without wind direction input. IEEE Trans Geosci Remote Sens, 52(2): 980–990
https://doi.org/10.1109/TGRS.2013.2246171
12 G C Leite, D M Ushizima, F N S Medeiros, G G de Lima (2010). Wavelet analysis for wind fields estimation. Sensors (Basel), 10(6): 5994–6016
https://doi.org/10.3390/s100605994 pmid: 22219699
13 M Lin, X Ye, X Yuan (2017). The first quantitative joint observation of typhoon by Chinese GF-3 SAR and HY-2A microwave scatterometer. Acta Oceanol Sin, 36(11): 1–3
https://doi.org/10.1007/s13131-017-1133-9
14 L Magnusson, J R Bidlot, M Bonavita, A R Brown, P A Browne, G De Chiara, M Dahoui, S T K Lang, T McNally, K S Mogensen, F Pappenberger, F Prates, F Rabier, D S Richardson, F Vitart, S Malardel (2019). ECMWF activities for improved hurricane forecasts. Bull Am Meteorol Soc, 100(3): 445–458
https://doi.org/10.1175/BAMS-D-18-0044.1
15 M T Montgomery, R K Smith (2017). Recent developments in the fluid dynamics of tropical cyclones. Annual Review of Fluid Mechanics, 49: 541–574
16 K J Mueller, M DeMaria, J Knaff, J P Kossin, T H Vonder Haar (2006). Objective estimation of tropical cyclone wind structure from infrared satellite data. Weather Forecast, 21(6): 990–1005
https://doi.org/10.1175/WAF955.1
17 L Ren, J Yang, A A Mouche, H Wang, G Zheng, J Wang, H Zhang, X Lou, P Chen (2019). Assessments of ocean wind retrieval schemes used for Chinese gaofen-3 synthetic aperture radar co-polarized data. IEEE Trans Geosci Remote Sens, 57(9): 7075–7085
https://doi.org/10.1109/TGRS.2019.2911325
18 S J Sangster, C W Landsea (2020). Constraints in dvorak wind speed estimates: how quickly can hurricanes intensify? Weather Forecast, 35(4): 1235–1241
https://doi.org/10.1175/WAF-D-19-0186.1
19 W Shao, Y Ding, J Li, S Gou, F Nunziata, X Yuan, L Zhao (2019). Wave retrieval under typhoon conditions using a machine learning method applied to Gaofen-3 SAR imagery. Can J Rem Sens, 45(6): 723–732
https://doi.org/10.1080/07038992.2019.1683444
20 W Shao, X Yuan, Y Sheng, J Sun, W Zhou, Q Zhang (2018). Development of wind speed retrieval from cross-polarization Chinese gaofen-3 synthetic aperture radar in typhoons. Sensors (Basel), 18(2): 412–427
https://doi.org/10.3390/s18020412 pmid: 29385068
21 H Shen, W Perrie, Y He (2016). Evaluation of hurricane wind speed retrieval from cross-dual-pol SAR. Int J Remote Sens, 37(3): 599–614
https://doi.org/10.1080/01431161.2015.1134845
22 H Shen, W Perrie, Y He, G Liu (2014). Wind speed retrieval from VH dual-polarization RADARSAT-2 SAR Images. IEEE Trans Geosci Remote Sens, 52(9): 5820–5826
https://doi.org/10.1109/TGRS.2013.2293143
23 A Stoffelen, J A Verspeek, J Vogelzang, A Verhoef (2017). The CMOD7 geophysical model function for ASCAT and ERS wind retrievals. IEEE J Sel Top Appl Earth Obs Remote Sens, 10(5): 2123–2134
https://doi.org/10.1109/JSTARS.2017.2681806
24 E W Uhlhorn, B W Klotz, T Vukicevic, P D Reasor, R F Rogers (2014). Observed hurricane wind speed asymmetries and relationships to motion and environmental shear. Mon Weather Rev, 142(3): 1290–1311
https://doi.org/10.1175/MWR-D-13-00249.1
25 H Wang, J Yang, A Mouche, W Shao, J Zhu, L Ren, C Xie (2017). GF-3 SAR oceanwind retrieval: the first view and preliminary assessment. Remote Sens, 9(7): 694–706
https://doi.org/10.3390/rs9070694
26 G J van Zadelhoff, A Stoffelen, P W Vachon, J Wolfe, J Horstmann, M Belmonte Rivas (2014). Retrieving hurricane wind speeds using cross-polarization C-band measurements. Atmos Meas Tech, 7(2): 437–449
https://doi.org/10.5194/amt-7-437-2014
27 B Zhang, W Perrie, J A Zhang, E W Uhlhorn, Y He (2014). High-resolution hurricane vector winds from C-band dual-polarization SAR observations. J Atmos Ocean Technol, 31(2): 272–286
https://doi.org/10.1175/JTECH-D-13-00006.1
28 G Zhang, X Li, W Perrie, P A Hwang, B Zhang, X Yang (2017a). A hurricane wind speed retrieval model for C-band RADARSAT-2 cross-polarization ScanSAR images. IEEE Trans Geosci Remote Sens, 55(8): 4766–4774
https://doi.org/10.1109/TGRS.2017.2699622
29 G Zhang, W Perrie, X Li, J A Zhang (2017b). A hurricane morphology and sea surface wind vector estimation model based on C-band cross-polarization SAR imagery. IEEE Trans Geosci Remote Sens, 55(3): 1743–1751
https://doi.org/10.1109/TGRS.2016.2631663
30 T Zhang, X M Li, Q Feng, Y Ren, Y Shi (2019). Retrieval of sea surface wind speeds from Gaofen-3 full polarimetric data. Remote Sens, 11(7): 813
https://doi.org/10.3390/rs11070813
31 R Zhong, S Xu, F Huang, X Wu (2020). Reasons for the weakening of tropical depressions in the South China Sea. Mon Weather Rev, 148(8): 3453–3469
https://doi.org/10.1175/MWR-D-19-0364.1
32 X S Zhu, H Yu, Z C Mao, M Xu, J G Tan (2016). Satellite-based analysis on the concentric eyewall replacement cycles of super Typhoon Muifa (1109). J Trop Meteorol, 22: 330–340
33 X S Zhu, H Yu (2019).Environmental influences on the intensity and configuration of tropical cyclone concentric eyewalls in the western North Pacific. J Meteor Soc Japan, 97: 153–173
https://doi.org/10.2151/jmsj
[1] Shengming TANG, Yun GUO, Xu WANG, Jie TANG, Tiantian LI, Bingke ZHAO, Shuai ZHANG, Yongping LI. Validation of Doppler Wind Lidar during Super Typhoon Lekima (2019)[J]. Front. Earth Sci., 2022, 16(1): 75-89.
[2] Rong GUO, Hui YU, Zifeng YU, Jie TANG, Lina BAI. Application of the frequency-matching method in the probability forecast of landfalling typhoon rainfall[J]. Front. Earth Sci., 2022, 16(1): 52-63.
[3] Guomin CHEN, Xiping ZHANG, Qing CAO, Zhihua ZENG. Evaluation of forecast performance for Super Typhoon Lekima in 2019[J]. Front. Earth Sci., 2022, 16(1): 17-33.
[4] Md. Rezuanul ISLAM, Hiroshi TAKAGI. Typhoon parameter sensitivity of storm surge in the semi-enclosed Tokyo Bay[J]. Front. Earth Sci., 2020, 14(3): 553-567.
[5] Gefei DENG, Yongming SHEN, Changping LI, Jun TANG. Computational investigation on hydrodynamic and sediment transport responses influenced by reclamation projects in the Meizhou Bay, China[J]. Front. Earth Sci., 2020, 14(3): 493-511.
[6] Xiba TANG, Fan PING, Shuai YANG, Mengxia LI, Jing PENG. On the rapid intensification for Typhoon Meranti (2016): convection, warm core, and heating budget[J]. Front. Earth Sci., 2019, 13(4): 791-807.
[7] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
[8] Sui HUANG, Shengming TANG, Hui YU, Wenbo XUE, Pingzhi FANG, Peiyan CHEN. Impact of physical representations in CALMET on the simulated wind field over land during Super Typhoon Meranti (2016)[J]. Front. Earth Sci., 2019, 13(4): 744-757.
[9] Jia ZHU, Jiong SHU, Xing YU. Improvement of typhoon rainfall prediction based on optimization of the Kain-Fritsch convection parameterization scheme using a micro-genetic algorithm[J]. Front. Earth Sci., 2019, 13(4): 721-732.
[10] Wanben WU, Wei WANG, Michael E. Meadows, Xinfeng YAO, Wei PENG. Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1&2[J]. Front. Earth Sci., 2019, 13(4): 682-694.
[11] Pingzhi FANG, Deqian ZHENG, Ming GU, Haifeng CHENG, Bihong ZHU. Numerical investigation of the wind environment around tall buildings in a central business district[J]. Front. Earth Sci., 2019, 13(4): 848-858.
[12] Baofeng JIAO, Lingkun RAN, Xinyong SHEN. The evolution of hollow symmetric-PV tower during the landfall of Typhoon Mujigae (2015)[J]. Front. Earth Sci., 2019, 13(4): 817-828.
[13] Zhoujie CHENG, Ming WEI, Yaping ZHU, Jie BAI, Xiaoguang SUN, Li GAO. Cloud type identification for a landfalling typhoon based on millimeter-wave radar range-height-indicator data[J]. Front. Earth Sci., 2019, 13(4): 829-835.
[14] Kaiguo FAN, Huaguo ZHANG, Jianjun LIANG, Peng CHEN, Bojian XU, Ming ZHANG. Analysis of ship wake features and extraction of ship motion parameters from SAR images in the Yellow Sea[J]. Front. Earth Sci., 2019, 13(3): 588-595.
[15] Yan-An LIU, Zhibin SUN, Maosi CHEN, Hung-Lung Allen HUANG, Wei GAO. Assimilation of atmospheric infrared sounder radiances with WRF-GSI for improving typhoon forecast[J]. Front. Earth Sci., 2018, 12(3): 457-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed