Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 786-797    https://doi.org/10.1007/s11707-021-0942-5
RESEARCH ARTICLE
Geospatial approach to elucidate anomalies in the hierarchical organization of drainage network in Kuttiyadi River Basin, Southern India
Thulasi Veedu SWETHA1(), Girish GOPINATH2,3(), Arun BHADRAN4, Arjun P2
1. Department of Geology and Environmental Science, Christ College, Kerala 680125, India
2. Geomatics Division, Centre for Water Resources Development and Management, Kerala 673571, India
3. Department of Climate Variability and Aquatic Ecosystems, Kerala University of Fisheries and Ocean Studies, Kerala 682508, India
4. Earthquake Geology Division, Geological Survey of India, NER Shillong 793014, India
 Download: PDF(4811 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An assessment of anomalies in the hierarchical organization of the drainage network in the Kuttiyadi River Basin (KuRB), Kerala, has been performed by considering various morphometric parameters such as bifurcation index (R), hierarchical anomaly index (Δa), hierarchical anomaly density (ga), and stream gradient index (SL) in a geographical information system (GIS) platform. Further, a digital elevation model (DEM) of the area has been generated from Cartosat stereo pair data at 2.5-m resolution. The computed quantitative information about drainage characteristics reveals the highest drainage anomaly is observed in sub-watersheds (SW) III and IV. It is observed that neo-tectonic activity caused the development of younger stage drainage patterns of structural controls in the sub-watersheds of this river basin. The tectonic activity-induced diffusion, high energy fluvial erosion, and anthropogenic interferences altered the hierarchical organization of the drainage network of the sub-watersheds in mature to old stages of geomorphic evolution. The results of finding validated with asymmetry factor and ratio of the hierarchical index (Δa) with hierarchical anomaly number (A), bifurcation index (R), direct bifurcation ratio (Rdb), stream gradient index (SL), and denudation index (logTu). From the denudation index analysis, the sediment yield of the river basin is identified as 0.67 t·km−2·yr−1. Moreover, the asymmetric factor (AF) in the KuRB shows the imprints of Paleo−Neo Proterozoic crustal tilting toward a NNW−SSE direction.

Keywords river basin      hierarchical anomaly      bifurcation index      stream gradient index      denudation index      Cartosat-1 DEM     
Corresponding Author(s): Thulasi Veedu SWETHA,Girish GOPINATH   
Online First Date: 19 April 2022    Issue Date: 29 December 2022
 Cite this article:   
Thulasi Veedu SWETHA,Girish GOPINATH,Arun BHADRAN, et al. Geospatial approach to elucidate anomalies in the hierarchical organization of drainage network in Kuttiyadi River Basin, Southern India[J]. Front. Earth Sci., 2022, 16(3): 786-797.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0942-5
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/786
Fig.1  Kuttiyadi River Basin with major streams, lineaments, elevation details and reservoirs.
Fig.2  (a) Major crustal blocks and shear/suture zones in Southern India (modified after Santosh et al. (2015) and Collins et al. (2014)). (b) Lithological map of KuRB.
Fig.3  Workflow diagram of hierarchical anomaly analysis
Fig.4  Stream ordering proposed by Strahler (1964).
Fig.5  Sub-watersheds and stream ordering of drainage networks in KuRB.
Stream junctions A SW-I SW-II SW-III
Hat pq= 2 (q−2)−2 (p−1) B A×B B A×B B A×B
1-2 0 47 0 27 0 39 0
1-3 1 40 40 6 6 34 34
1-4 3 38 114 11 33 29 87
1-5 7 2 14 5 35 13 91
Total 1st order streams (N1) 127 49 115
2-3 0 19 19 8 0 10 0
2-4 2 12 24 3 6 11 22
2-5 6 0 0 4 0 3 18
2-6 14 0 0 0 0 0 0
Total 2nd order streams 31 15 24
3-4 0 8 0 1 0 4 0
3-5 4 2 8 1 4 2 8
3-6 12 0 0 0 0 0 0
Total 3rd order streams 10 2 6
4-5 0 3 0 0 1 0
4-6 8 0 0 0 0 0
Total 4th order streams 3 0 1
5-6 0 0 0 0
Hierarchical anomaly (Hat) = ∑A×B 219 84 260
Hierarchical anomaly index (Δaa = Hat /N1 1.72 1.71 2.20
Basin area (A)/km2 93 29 54
Hierarchical anomaly density (ga)ga = Hat /A 2.35 2.89 4.81
Tab.1  (a) Computed stream junctions, number of streams for each stream junction (B) and hierarchical anomaly parameters SW-I to SW-III
Stream junctions A SW-IV SW-V SW-VI KuRB
Hapq= 2 (q–2)–2 (p–1) B A×B B A×B B A×B B A×B
1-2 0 126 0 32 0 13 0 284 0
1-3 1 63 63 9 9 1 1 153 153
1-4 3 75 225 6 18 20 60 179 537
1-5 7 49 343 8 56 0 0 77 539
Total 1st order streams (N1) 313 55 33 693
2-3 0 26 0 5 0 0 0 68 0
2-4 2 13 26 1 2 0 0 40 80
2-5 6 8 48 3 18 0 0 18 108
2-6 14 0 0 0 0 9 26 9 126
Total 2nd order streams 47 9 9 135
3-4 0 9 0 0 0 0 0 22 0
3-5 4 6 24 0 0 0 0 16 64
3-6 12 0 0 0 0 3 36 3 36
Total 3rd order streams 15 0 3 41
4-5 0 0 0 0 0 0 0 4 0
4-6 8 3 24 1 8 0 0 4 32
Total 4th order streams 3 1 0 0 8
5-6 0 0 0 5 5 0
Hierarchical anomaly (Hat) = ∑A×BHierarchical anomaly index (Δaa = Hat/N1Basin area (A)/km2Hierarchical anomaly density (ga)ga = Hat/A 753 111 122 1675
2.40 2.01 3.69 2.41
147 84 268 676
5.1 1.32 0.83 2.47
  Table 1(b) Computed stream junctions, number of streams for each stream junction (B) and hierarchical anomaly parameters SW-IV to SW-VI
Sub-watershed No. of streams in each stream order No. of streams joining to next higher order
1 2 3 4 5 6 1 2 3 4 5 6
SW-I 127 31 10 3 47 19 8 3
SW-II 49 15 2 27 8 1
SW-III 115 24 6 1 39 10 4 1
SW-IV 313 47 15 3 126 26 9
SW-V 55 9 1 32 5
SW-VI 33 9 3 5 1 13
Tab.2  (a) Number of streams in different stream order and joining to next higher order
Sub-watershed Bifuration ratio (Rb) Direct Bifurcation ratio (Rdb) Bifurcation index
1/2 2/3 3/4 4/5 5/6 1 2 3 4 5 6 1 2 3 4 5 6 Mean
SW-I 2.7 3.1 3.3 1.51 1.9 2.66 3 1.19 1.2 0.67 3 1.52
SW-II 3.3 7.5 1.8 4 1 1.46 3.5 1 0.99
SW-III 4.8 4 6 1.62 1.7 4 1 3.17 2.34 2 1 2.12
SW-IV 6.7 3.13 5 2.68 1.7 3 3.97 1.4 2 2.46
SW-V 6.1 9 1 3.55 5 2.56 4 1 2.52
SW-VI 3.7 3 3 5 1.4 2.26 3 3 5 3.32
  Table 2(b) Bifurcation index values (R) calculated from bifurcation ratio (Rb) and direct bifurcation ratio (Rdb)
Fig.6  (a) Brittle–ductile deformations exposed in the KuRB river bed, SW-I river shows left tilt parallel to the Moyar Shear dextral movement; (b) conjugate sets of Joints in the SW-II controlledby regional kinematics; (c)–(e) evidance of netectonic signatures and river response to the reactivations of faults/shear Channel migration, unpaired terraces and uplifted river beds; (f)–(h) various joints in the KuRB makes driange trellis to parallel drainge pattern.
SW ΔH ΔL L SLsegment SLtotal SLsegment/SLtotal
SW-I 25 5.98 14.25 59.57 21.3 2.74
SW-II 5 3.86 11.33 14.67 4.74 3.09
SW-III 360 9.01 13.79 568.96 313.04 1.81
SW-IV 680 16.48 16.72 689.90 556.00 1.73
SW-V 15 12.28 15.88 19.39 12.5 1.55
SW-VI 35 23.87 23.87 35 25.54 1.37
Tab.3  Segments SL index and total length SL index with the ratio in sub-watersheds
Sub-watershed Drainage density Hierarchical anomaly index (Δa) Denudation index (logTu)/(t·km−2·yr−1)
SW-I 2.79 1.72 0.39
SW-II 3.23 1.71 0.42
SW-III 3.08 2.20 0.40
SW-IV 3.14 2.40 0.43
SW-V 1.65 2.01 0.34
SW-VI 0.66 3.69 2.04
Kuttiyadi basin 2.43 2.41 0.67
Tab.4  Denudation index of sub-watersheds
Fig.7  The interrelationship between (a) Δa and R, (b) Δa and A, (c) Δa and SLsegment/SLtotal, (d) Δa and Rb, (e) Δa and logTu, (f) Δa and AF.
Fig.8  Kuttiyadi River Basin with drainage networks and tilts direction (yellow arrow toward Right- RT and left- LT side) of sub-watersheds indicate the role of neotectonics.
1 V Ambili, A C Narayana. (2014). Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries southwest India. Geomorphology, 217: 37–47
https://doi.org/10.1016/j.geomorph.2014.04.013
2 A U Anish, K R Baiju, E V Midhun, K N Krishnakumar. (2019). Hierarchical anomaly and denudation index of Karuvannur River Basin, Thrissur District, Kerala, India. Eco Chronicle, 14: 60–65
3 A Bhadran, V K Vijesh, G Gopinath, D Girishbai, N P Jesiya, K P Thrivikramji. (2018). Morpho-hypsometric evolution of the Karuvannur River Basin, a tropical river in central Kerala, southwestern peninsular India. Arab J Geosci, 11: 430
https://doi.org/10.1007/s12517-018-3794-x
4 G C AvenaG GiulianoE L Palmieri(1967). On the quantitative assessment of the hierarchisation and evolution of river networks. Boll Soc Geol Ital, 86: 781–796 (in Italian)
5 S Bahrami (2013). Analyzing the drainage system anomaly of Zagros basins: implications for active tectonics, Tectonophysics, 608: 914−928
6 D BurbankR Anderson (2001). Tectonic Geomorphology. Oxford: Blackwell Science
7 L F Bilous, P Shyshchenco, V Samoilenko, O Havrylenko(2020). Spatial morphometric analysis of digital elevation model in landscape research. In: Conference Proceedings, Geoinformatics: Theoretical and Applied Aspects 2020, Vol 2020
8 R J Chorley (1969). Introduction to Physical Hydrology, Suffolk Methuen and Co. Ltd.
9 R L Dikpal, T J Renuka Prasad, K Satish. (2017). Evaluation of morphometric parameters derived from Cartosat-1 DEM using remote sensing and GIS techniques for Budigere Amanikere watershed, Dakshina Pinakini Basin, Karnataka, India. Appl Water Sci, 7(8): 4399–4414
https://doi.org/10.1007/s13201-017-0585-6
10 S Ghosh, R Sivakumar. (2018). Assessment of morphometric parameters for the development of Relative active tectonic index and its significant for seismic hazard study: an integrated geoinformatic approach. Environ Earth Sci, 77: 600
https://doi.org/10.1007/s12665-018-7787-6
11 G Gopinath, T V Swetha, M K Ashitha. (2014). Elicitation of erosional signature of a tropical river basin with high-resolution stereo data. App Geoma, 6(3): 149–157
https://doi.org/10.1007/s12518-014-0127-y
12 G Gopinath, A G Nair, G K Ambili, T V Swetha. (2016). Watershed prioritization based on morphometric analysis coupled with multi criteria decision making. Arab J Geosci, 9(2): 129
https://doi.org/10.1007/s12517-015-2238-0
13 P Guarnieri, C Pirrotta. (2008). The response of drainage basins to the late Quaternary tectonics in the sicilian side of the Messina Strait (NE Sicily). Geomorphology, 95(3−4): 260–273
https://doi.org/10.1016/j.geomorph.2007.06.013
14 R E Hamdouni, C Irigaray, T Fernández, J Chacón, E A Keller. (2007). Assessment of relative active tectonics, southwest border of Sierra Nevada (Southern Spain). Geomorphology, 96(1−2): 150–173
https://doi.org/10.1016/j.geomorph.2007.08.004
15 R E Horton. (1941). An approach toward a physical interpretation of infiltration capacity. Proc Soil Sci Soc Am, 5(C): 399–417
https://doi.org/10.2136/sssaj1941.036159950005000C0075x
16 N Jesiya, G Gopinath. (2018). A fuzzy based MCDM–GIS framework to evaluate groundwater potential index for sustainable groundwater management—a case study in an urban-periurban ensemble, southern India. Groundw Sustain Dev, 11: 100466
https://doi.org/10.1016/j.gsd.2020.100466
17 E A Keller, N Pinter(2002). Active Tectonics: Earthquakes, Uplift, and Landscape (2nd ed). Upper Saddle River: Prentice Hall
18 B A Kumar, G Gopinath, M S S Chandran (2014). River sinuosity in a humid tropical river basin, south west coast of India. Arab J Geosci, 7(5): 1763−1772
19 D Kumar, B P Duarah. (2019). Neo-tectonic signatures in the Mishmi Massif, Eastern Himalayas: an interpretation on the basis of the Lohit River Basin geometry. Arab J Geosci, 12(21): 665
https://doi.org/10.1007/s12517-019-4851-9
20 D Kumar, B P Duarah. (2020). Geomorphic signatures of active tectonics in Subansiri River Basin eastern Himalayas. J Mt Sci, 17(6): 1523–1540
https://doi.org/10.1007/s11629-019-5492-x
21 M S Manu, S Anirudhan. (2008). Drainage characteristics of Achankovil River Basin, Kerala. J Geol Soc India, 71: 841–850
22 D S Marta, D M Maurizio, F Paola, M Enrico, N Olivia, P Gilberto, P Tommaso, T Francesco. (2008). Morphotectonic evolution of the Adriatic piedimont of the Apennines: an advancement in the knowledge of the Marche – Abruzzo border area. Geomorphology, 102(1): 119–129
https://doi.org/10.1016/j.geomorph.2007.06.018
23 M Martinez, E H Hayakawa, J C Stevaux, J D Profeta. (2011). Sl index as indicator of anomalies in the longitudinal profile of Pirapó River. Geosciences, 30(1): 63–76
24 M M Nair. (1990). Structural trendline patterns and lineaments of the Western Ghats, south of 13° Latitude. J Geol Soc India, 35: 99–105
25 C Ozkaymak, H Sozbilir(2012). Tectonic geomorphology of the Spildagi high ranges western Anatolia. Geomorphology, 173−174: 128−140
26 E A Keller, N Pinter(1996). Active Tectonics, Earthquake Uplift and Landscape. Upper Saddle River: Prentice Hall
27 V Prasannakumar, A M McCaig. (2016). Reactivation and strain localisation in Bhavani Shear Zone, South India. J Geol Soc India, 88(4): 421–432
https://doi.org/10.1007/s12594-016-0505-7
28 P M Prashant, P M Nirupama. (2016). Application of Hack’s stream gradient index (SL index) to longitudinal profiles of the rivers flowing across Satpura-Purna Plain, Western Vidarbha, Maharashtra. J Indian Geomorph, 4: 65–72
29 P K Rai, P Singh, V N Mishra, A Singh, B Sajan, A P Shahi. (2019). Geospatial approach for quantitative drainage morphometric analysis of Varuna river basin, India. J Landsc Ecol, 12(2): 1–25
https://doi.org/10.2478/jlecol-2019-0007
30 C P Rajendran, B John, K Sreekumari, K Rajendran. (2009). Reassessing the earthquake hazard in Kerala based on the historical and current seismicity. J Geol Soc India, 73(6): 785–802
https://doi.org/10.1007/s12594-009-0063-3
31 S M Ramasamy, C J Kumanan, R Selvakumar, J Saravanavel. (2011). Remote sensing revealed drainage anomalies and related tectonics of South India. Tectonophysics, 501(1–4): 41–51
https://doi.org/10.1016/j.tecto.2011.01.011
32 V B Rekha, A V George, M Rita. (2011). Morphometric analysis and micro-watershed prioritization of Peruvanthanam sub-watershed, the Manimala River Basin, Kerala, South India. Environ Res Eng Manag, 57: 6–14
33 M Santosh, Q Y Yang, E Shaji, T Tsunogae, M R Mohan, M Satyanarayanan. (2015). An exotic mesoarchaean microcontinent: the Coorg block, southern India. Gondwana Res, 27(1): 165–195
https://doi.org/10.1016/j.gr.2013.10.005
34 S A Schumm, J F Dumont, J M Holbrook(2000). Active Tectonics and Alluvial Rivers. New York: Cambridge University Press
35 K Soman(2013). Geology of Kerala. Bangalore: Geological Society of India
36 A N Strahler(1964). Quantitative geomorphology of drainage basins and channel networks. In: Chow V T, ed. Handbook of Applied Hydrology. New York: McGraw-Hill, 439−476
37 T V Swetha, G Gopinath, K P Thrivikramji, N P Jesiya. (2017). Geospatial and MCDM tool mix for identification of potential groundwater prospects in a tropical river basin, Kerala. Environ Earth Sci, 76(12): 428
https://doi.org/10.1007/s12665-017-6749-8
38 T V Swetha, G Gopinath. (2020). Landslides susceptibility assessment by analytical network process: a case study for Kuttiyadi River Basin (Western Ghats, southern India). SN Applied Science, 2: 1776
https://doi.org/10.1007/s42452-020-03574-5
39 H Vijith, R Satheesh. (2006). GIS Based Morphometric analysis of two major upland subwatersheds of Meenachil River in Kerala. Photonirvachak (Dehra Dun), 34(2): 181–185
https://doi.org/10.1007/BF02991823
40 H Vijith, V Prasannakumar, M A Sharath Mohan, M V Ninu Krishnan, P Pratheesh. (2017). River and basin morphometric indexes to detect tectonic activity: a case study of selected river basins in the South Indian Granulite Terrain (SIGT). Phys Geogr, 38(4): 360–378
https://doi.org/10.1080/02723646.2017.1283478
[1] Ji LI, Daoxian YUAN, Yuchuan SUN, Jianhong LI. Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulation and forecasting by coupling the Karst-Liuxihe model[J]. Front. Earth Sci., 2022, 16(2): 381-400.
[2] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
[3] Melinda LAITURI. The hydrosocial cycle in rapidly urbanizing watersheds[J]. Front. Earth Sci., 2020, 14(2): 256-267.
[4] Yuanfang CHAI, Yitian LI, Yunping YANG, Sixuan LI, Wei ZHANG, Jinqiu REN, Haibin XIONG. Water level variation characteristics under the impacts of extreme drought and the operation of the Three Gorges Dam[J]. Front. Earth Sci., 2019, 13(3): 510-522.
[5] T. PERROU, A. GARIOUD, I. PARCHARIDIS. Use of Sentinel-1 imagery for flood management in a reservoir-regulated river basin[J]. Front. Earth Sci., 2018, 12(3): 506-520.
[6] Yaowen XIE, Guisheng WANG, Xueqiang WANG, Peilei FAN. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China[J]. Front. Earth Sci., 2017, 11(4): 629-642.
[7] Xin JIA, Shuangwen YI, Yonggang SUN, Shuangye WU, Harry F. LEE, Lin WANG, Huayu LU. Spatial and temporal variations in prehistoric human settlement and their influencing factors on the south bank of the Xar Moron River, Northeastern China[J]. Front. Earth Sci., 2017, 11(1): 137-147.
[8] Jinjian LI, Xiaojie MENG, Yan ZHANG, Juan LI, Linlin XIA, Hongmei ZHENG. Analysis of the temporal and spatial distribution of water quality in China’s major river basins, and trends between 2005 and 2010[J]. Front. Earth Sci., 2015, 9(3): 463-472.
[9] Yong ZENG,Yanpeng CAI,Peng JIA,Jiansu MAO. Development of a model-based flood emergency management system in Yujiang River Basin, South China[J]. Front. Earth Sci., 2014, 8(2): 231-241.
[10] Qiuwen CHEN, Jing LI, Ruonan LI, Wenda WEI, Liming WANG. River basin water resource compensation characteristics by set pair analysis: the Dongjiang example[J]. Front Earth Sci, 2014, 8(1): 64-69.
[11] Xiaoduo PAN, Xin Li, Xiaokang SHI, Xujun HAN, Lihui LUO, Liangxu WANG. Dynamic downscaling of near-surface air temperature at the basin scale using WRF–a case study in the Heihe River Basin, China[J]. Front Earth Sci, 2012, 6(3): 314-323.
[12] Changqing YAO, Zhifeng YANG. Parameters optimization on DHSVM model based on a genetic algorithm[J]. Front Earth Sci Chin, 2009, 3(3): 374-380.
[13] LI Mingji, MA Yuxia, SHI Peiji. Climate changing characteristics of Zhangye City in Heihe River basin during 1968–2005[J]. Front. Earth Sci., 2008, 2(2): 243-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed