Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (3) : 509-525    https://doi.org/10.1007/s11707-022-1068-0
A DEM upscaling method with integrating valley lines based on HASM
Mingwei ZHAO1,5,6,7, Xiaoxiao JU2, Na ZHAO3,4(), Chun WANG1,5,6,7, Yan XU1,5,6,7, Xiaoran WU3,4, Weitao LI1,5,6,7
. Geographic Information and Tourism College, Chuzhou University, Chuzhou 239000, China
. College of Resource, Environment and Tourism, Capital Normal University, Beijing 100048, China
. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
. Anhui Engineering Laboratory of Geo-information Smart Sensing and Services, Chuzhou 239000, China
. Anhui Center for Collaborative Innovation in Geographical Information Integration and Application, Chuzhou 239000, China
. School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China
 Download: PDF(8356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A new digital elevation model (DEM) upscaling method based on high accuracy surface modeling (HASM) is proposed by combining the elevation information of DEM and the valley lines extracted from DEM with different flow accumulation thresholds. The proposed method has several advantages over traditional DEM upscaling methods. First, the HASM ensures the smoothness of the upscaled DEM. Secondly, several DEMs with different topographic details can be obtained using the same DEM grid size by incorporating the valley lines with different flow accumulation thresholds. The Jiuyuangou watershed in China’s Loess Plateau was used as a case study. A DEM with a grid size of 5 m obtained from the local surveying and mapping department was used to verify the proposed DEM upscaling method. We established the surface complexity index to describe the complexity of the topographic surface and quantified the differences in the topographic features obtained from different upscaling results. The results show that topography becomes more generalized as grid size and flow accumulation threshold increase. At a large DEM grid size, an increase in the flow accumulation threshold increases the difference in elevation values in different grids, increasing the surface complexity index. This study provides a new DEM upscaling method suitable for quantifying topography.

Keywords DEM      upscaling      HASM      flow accumulation threshold      surface complexity index     
Corresponding Author(s): Na ZHAO   
Online First Date: 03 July 2024    Issue Date: 29 September 2024
 Cite this article:   
Mingwei ZHAO,Xiaoxiao JU,Na ZHAO, et al. A DEM upscaling method with integrating valley lines based on HASM[J]. Front. Earth Sci., 2024, 18(3): 509-525.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1068-0
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I3/509
Fig.1  Locations of the grid centers in the original DEM (black solid triangle) and the grid centers of the upscaled DEM (black solid circle).
Fig.2  The series number of central grid and its adjacent grid.
Fig.3  Topography of the study area.
Fig.4  The upscaling results for a 30 m grid size. (a) Flow accumulation threshold of 500; (b) flow accumulation threshold of 5000; (c) flow accumulation threshold of 15000.
Fig.5  The upscaling results for a 90 m grid size. (a) Flow accumulation threshold of 500; (b) flow accumulation threshold of 5000; (c) flow accumulation threshold of 15000.
Fig.6  SRTM-dem of the test area. (a) Grid size is 30 m; (b) grid size is 90 m.
DEM Min/m Max/m Mean/m Std. Dev. Slope/(° )
Original DEM 828 1188.3 1003.68 58.24 29.36
Upscaled DEMGrid size:30 mFlow accumulation threshold: 500 827.95 1185.78 1004.37 58.34 22.60
Upscaled DEMGrid size:30 mFlow accumulation threshold: 5000 828.08 1185.74 1007.18 58.21 19.87
Upscaled DEMGrid size:30 mFlow accumulation threshold: 15000 828.08 1185.74 1008.09 57.77 18.79
Upscaled DEMGrid size:90 mFlow accumulation threshold: 500 843.96 1171.78 1004.87 55.72 10.47
Upscaled DEMGrid size:90 mFlow accumulation threshold: 5000 843.41 1173.22 1010.59 56.51 10.16
Upscaled g DEMGrid size:90 mFlow accumulation threshold: 15000 843.40 1173.14 1012.87 56.28 9.44
Tab.1  Elevation Statistics for Different DEMs
Fig.7  The histograms of different DEMs. (a) Original DEM; (b) flow accumulation threshold of 500 (grid size: 30 m); (c) flow accumulation threshold of 5000 (grid size: 30 m); (d) flow accumulation threshold of 15000 (grid size: 30 m); (e) flow accumulation threshold of 500 (grid size: 90 m); (f) flow accumulation threshold of 5000 (grid size: 90 m); (g) flow accumulation threshold of 15000 (grid size: 90 m).
Fig.8  Contour lines extracted from the upscaled DEM (grid size: 30 m). (a) DEM hillshade; (b) flow accumulation threshold of 500; (c) flow accumulation threshold of 5000; (d) flow accumulation threshold of 15000.
Fig.9  Contour lines extracted from the upscaled DEM (grid size: 90 m). (a) DEM hillshade; (b) flow accumulation threshold of 500; (c) flow accumulation threshold of 5000; (d) flow accumulation threshold of 15000.
Fig.10  SC index of the original DEM.
Fig.11  SC index of the upscaled DEM (grid size: 90 m). (a) Flow accumulation threshold of 500; (b) flow accumulation threshold of 5000; (c) flow accumulation threshold of 15000.
Fig.12  SC index of the upscaled DEM (grid size: 30 m). (a) Flow accumulation threshold of 500; (b) flow accumulation threshold of 5000; (c) flow accumulation threshold of 15000.
DEM Max Mean Std
Original DEM 4.665 1.533 0.670
Upscaled DEMGrid size:30 mFlow accumulation threshold: 500 3.094 1.297 0.528
Upscaled DEMGrid size:30 mFlow accumulation threshold: 5000 3.079 1.112 0.540
Upscaled DEMGrid size:30 mFlow accumulation threshold: 15000 2.945 1.041 0.530
Upscaled DEMGrid size:90 mFlow accumulation threshold: 500 1.502 0.622 0.321
Upscaled DEMGrid size:90 mFlow accumulation threshold: 5000 1.482 0.586 0.308
Upscaled DEMGrid size:90 mFlow accumulation threshold: 15000 1.419 0.543 0.303
Tab.2  Descriptive statistics of the SC Index for Different DEMs (m)
Fig.13  The histograms of SC index from different DEMs. (a) original DEM; (b) flow accumulation threshold of 500 (grid size: 30 m); (c) flow accumulation threshold of 5000 (grid size: 30 m); (d) flow accumulation threshold of 15000 (grid size: 30 m); (e) flow accumulation threshold of 500 (grid size: 90 m); (f) flow accumulation threshold of 5000 (grid size: 90 m); (g) flow accumulation threshold of 15000 (grid size: 90 m).
Fig.14  Mean (left) and RMSE (right) of SC index for different flow accumulation thresholds (grid size: 30 m).
Fig.15  Mean (left) and RMSE (right) of SC index for different flow accumulation thresholds (grid size: 90 m).
1 F J, Aguilar F, Aguera M A, Aguilar F Carvajal (2005). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy.Photogramm Eng Remote Sensing, 71(7): 805–816
https://doi.org/10.14358/PERS.71.7.805
2 T, Ai J Li (2010). A DEM generalization by minor valley branch detection and grid filling.ISPRS J Photogramm Remote Sens, 65(2): 198–207
https://doi.org/10.1016/j.isprsjprs.2009.11.001
3 T, Ai Y, Liu Y Huang (2007). The hierarchical watershed partitioning and generalization of river network.Acta Geodetica Cartograph Sin, 36(2): 231–236,243
4 P A Burrough, R A McDonnell, C D Lloyd (1988). Principles of Geographical Information Systems. New York: Oxford University Press
5 C F, Chen T X, Yue Y Y Li (2012). A high speed method of SMTS.Comput Geosci, 41: 64–71
https://doi.org/10.1016/j.cageo.2011.08.012
6 C, Chen Y Li (2013). An orthogonal least-square-based method for DEM generalization.Int J Geogr Inf Sci, 27(1): 154–167
https://doi.org/10.1080/13658816.2012.674136
7 Y, Chen T, Ma X, Chen Z, Chen C, Yang C, Lin L Shan (2016). A new DEM generalization method based on watershed and tree structure.PLoS One, 11(8): e0159798
https://doi.org/10.1371/journal.pone.0159798
8 Z, Chen X, Ma W, Yu L Wu (2020). An integrated graph Laplacian downsample (IGLD)-based method for DEM generalization.Earth Sci Inform, 13(4): 973–987
https://doi.org/10.1007/s12145-020-00482-5
9 P F Fisher (1991). Firest experiments in viewshed uncertainty-The accuracy of the viewshed area.Photogramm Eng Remote Sensing, 57(10): 1321–1327
10 M S, Horritt P D Bates (2001). Effects of spatial resolution on a raster based model of flood flow.J Hydrol (Amst), 253(1–4): 239–249
https://doi.org/10.1016/S0022-1694(01)00490-5
11 S K, Jenson J O Domingue (1988). Extracting topographic structure from digital elevation data for geographic information-system analysis.Photogramm Eng Remote Sensing, 54(11): 1593–1600
12 D, Kawabata J Bandibas (2009). Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN).Geomorphology, 113(1–2): 97–109
https://doi.org/10.1016/j.geomorph.2009.06.006
13 J H, Li W J Chen (2005). A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data.Int J Remote Sens, 26(22): 5051–5069
https://doi.org/10.1080/01431160500166516
14 W T, Lin W C, Chou C Y, Lin P H, Huang J S Tsai (2006). Automated suitable drainage network extraction from digital elevation models in Taiwan’s upstream watersheds.Hydrol Processes, 20(2): 289–306
https://doi.org/10.1002/hyp.5911
15 X Liu (2008). Airborne LiDAR for DEM generation: some critical issues.Prog Phys Geogr, 32(1): 31–49
https://doi.org/10.1177/0309133308089496
16 T, Ma Y, Chen Y, Hua Z, Chen X, Chen C, Lin C Yang (2017). DEM generalization with profile simplification in four directions.Earth Sci Inform, 10(1): 29–39
https://doi.org/10.1007/s12145-016-0275-1
17 P N C, Murphy J, Ogilvie F R, Meng P Arp (2008). Stream network modelling using lidar and photogrammetric digital elevation models: a comparison and field verification.Hydrol Processes, 22(12): 1747–1754
https://doi.org/10.1002/hyp.6770
18 J F, O’Callaghan D M Mark (1984). The extraction of drainage networks from digital elevation data.Comput Vis Graph Image Process, 28(3): 323–344
https://doi.org/10.1016/S0734-189X(84)80011-0
19 P Raposo (2020). Variable DEM generalization using local entropy for terrain representation through scale.Intern J Cartograph, 6(1): 99–120
https://doi.org/10.1080/23729333.2019.1687973
20 J M, Schoorl M P W, Sonneveld A Veldkamp (2000). Three-dimensional landscape process modelling: the effect of DEM resolution.Earth Surf Process Landf, 25(9): 1025–1034
https://doi.org/10.1002/1096-9837(200008)25:9<1025::AID-ESP116>3.0.CO;2-Z
21 G Tang (2014). Progress of DEM and digital terrain analysis in China.Acta Geogr Sin, 69(9): 1305–1325
22 D G Tarboton (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models.Water Resour Res, 33(2): 309–319
https://doi.org/10.1029/96WR03137
23 D G, Tarboton R L, Bras I Rodriguez-Iturbe (1991). On the extraction of channel networks from digital elevation data.Hydrol Processes, 5(1): 81–100
https://doi.org/10.1002/hyp.3360050107
24 A Tribe (1992). Automated recognition of valley lines and drainage networks from grid digital electation models–a review and a new method.J Hydrol (Amst), 139(1–4): 263–293
https://doi.org/10.1016/0022-1694(92)90206-B
25 R, Turcotte J P, Fortin A N, Rousseau S, Massicotte J P Villeneuve (2001). Determination of the drainage structure of a watershed using a digital elevation model and a digital river and lake network.J Hydrol (Amst), 240(3–4): 225–242
https://doi.org/10.1016/S0022-1694(00)00342-5
26 J, Vaze J, Teng G Spencer (2010). Impact of DEM accuracy and resolution on topographic indices.Environ Model Softw, 25(10): 1086–1098
https://doi.org/10.1016/j.envsoft.2010.03.014
27 R Weibel (1992). Models and experiments for adaptive computer-assisted terrain generalization.Cartogr Geogr Inf Syst, 19(3): 133–153
https://doi.org/10.1559/152304092783762317
28 D M, Wolock G J McCabe (2000). Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data.Hydrol Processes, 14(6): 987–1002
https://doi.org/10.1002/(SICI)1099-1085(20000430)14:6<987::AID-HYP980>3.0.CO;2-A
29 Q, Wu Y, Chen J P, Wilson X, Liu H Li (2019). An effective parallelization algorithm for DEM generalization based on CUDA.Environ Model Softw, 114: 64–74
https://doi.org/10.1016/j.envsoft.2019.01.002
30 L Y, Xiong S J, Li G H, Hu K, Wang M, Chen A X, Zhu G A Tang (2023). Past rainfall-driven erosion on the Chinese loess plateau inferred from archaeological evidence from Wucheng City, Shanxi.Commun Earth Environ, 4(1): 4
https://doi.org/10.1038/s43247-022-00663-8
31 L, Xiong S, Li G, Tang J Strobl (2022). Geomorphometry and terrain analysis: data, methods, platforms and applications.Earth Sci Rev, 233: 104191
https://doi.org/10.1016/j.earscirev.2022.104191
32 L, Xiong G, Tang X, Yang F Li (2021). Geomorphology-oriented digital terrain analysis: progress and perspectives.J Geogr Sci, 31(3): 456–476
https://doi.org/10.1007/s11442-021-1853-9
33 T X Yue (2011). Surface Modeling: High Accuracy and High Speed Methods. Calabasas: CRC Press
34 T X, Yue C F, Chen B L Li (2010). An adaptive method of high accuracy surface modeling and its application to simulating elevation surface.Trans GIS, 14(5): 615–630
https://doi.org/10.1111/j.1467-9671.2010.01213.x
35 T X, Yue Z P, Du D J, Song Y Gong (2007). A new method of surface modeling and its application to DEM construction.Geomorphology, 91(1–2): 161–172
https://doi.org/10.1016/j.geomorph.2007.02.006
36 T X, Yue Y, Liu M W, Zhao Z P, Du N Zhao (2016). A fundamental theorem of Earth’s surface modelling.Environ Earth Sci, 75(9): 751
https://doi.org/10.1007/s12665-016-5310-5
37 T X, Yue N, Zhao Y, Liu Y, Wang B, Zhang Z P, Du Z, Fan W, Shi C, Chen M, Zhao D, Song S, Wang Y, Song C, Yan Q, Li X, Sun L, Zhang Y, Tian W, Wang Y, Wang S, Ma H, Huang Y, Lu Q, Wang C, Wang Y, Wang M, Lu W, Zhou Y, Liu X, Yin Z, Wang Z, Bao M, Zhao Y, Zhao Y, Jiao U, Naseer B, Fan S, Li Y, Yang J P Wilson (2020). A fundamental theorem for eco-environmental surface modelling and its applications.Sci China Earth Sci, 63(8): 1092–1112
https://doi.org/10.1007/s11430-019-9594-3
38 R, Zhang S, Bian H Li (2021). RSPCN: super-resolution of digital elevation model based on recursive sub-pixel convolutional neural networks.ISPRS Int J Geoinf, 10(8): 501
https://doi.org/10.3390/ijgi10080501
39 N, Zhao T X, Yue M W, Zhao Z P, Du Z M, Fan C F Chen (2014). Sensitivity studies of a high accuracy surface modeling method.Sci China Earth Sci, 57(10): 2386–2396
https://doi.org/10.1007/s11430-014-4926-0
40 A, Zhou Y, Chen J P, Wilson H, Su Z, Xiong Q Cheng (2021). An enhanced double-filter deep residual neural network for generating super resolution DEMs.Remote Sens (Basel), 13(16): 3089
https://doi.org/10.3390/rs13163089
41 Q, Zhou Y Chen (2011). Generalization of DEM for terrain analysis using a compound method.ISPRS J Photogramm Remote Sens, 66(1): 38–45
https://doi.org/10.1016/j.isprsjprs.2010.08.005
[1] Dongjie GUAN, Xiaofeng FAN, Lilei ZHOU, Kangwen ZHU. Quantitative assessment of the supply, demand and flows of ecosystem services in the Yangtze River Basin, China[J]. Front. Earth Sci., 2024, 18(2): 422-445.
[2] Thulasi Veedu SWETHA, Girish GOPINATH, Arun BHADRAN, Arjun P. Geospatial approach to elucidate anomalies in the hierarchical organization of drainage network in Kuttiyadi River Basin, Southern India[J]. Front. Earth Sci., 2022, 16(3): 786-797.
[3] Yuexue XU, Hongchun ZHU, Changyu HU, Haiying LIU, Yu CHENG. Deep learning of DEM image texture for landform classification in the Shandong area, China[J]. Front. Earth Sci., 2022, 16(2): 352-367.
[4] Mingwei ZHAO, Ling JIANG, Chun WANG, Cancan YANG, Xin YANG. On the topographic entity-oriented digital elevation model construction method for urban area land surface[J]. Front. Earth Sci., 2021, 15(3): 580-594.
[5] Ziyang DAI, Fayuan LI, Mingwei ZHAO, Lanhua LUO, Haoyang JIAO. Extraction of lacunarity variation index for revealing the slope pattern in the Loess Plateau of China[J]. Front. Earth Sci., 2021, 15(1): 94-105.
[6] Bartłomiej SZYPUŁA, Małgorzata WIECZOREK. Geomorphometric relief classification with the k-median method in the Silesian Upland, southern Poland[J]. Front. Earth Sci., 2020, 14(1): 152-170.
[7] Hongchun ZHU, Yuexue XU, Yu CHENG, Haiying LIU, Yipeng ZHAO. Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly Area, China[J]. Front. Earth Sci., 2019, 13(3): 641-655.
[8] Guiyun ZHOU, Hongqiang WEI, Suhua FU. A fast and simple algorithm for calculating flow accumulation matrices from raster digital elevation[J]. Front. Earth Sci., 2019, 13(2): 317-326.
[9] Jianjun CAO, Guoan TANG, Xuan FANG, Jilong LI, Yongjuan LIU, Yiting ZHANG, Ying ZHU, Fayuan LI. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China[J]. Front. Earth Sci., 2019, 13(2): 410-421.
[10] Xin YANG, Jiaming NA, Guoan TANG, Tingting WANG, Axing ZHU. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China[J]. Front. Earth Sci., 2019, 13(1): 151-168.
[11] Parham PAHLAVANI, Behnaz BIGDELI. A mutual information-Dempster-Shafer based decision ensemble system for land cover classification of hyperspectral data[J]. Front. Earth Sci., 2017, 11(4): 774-783.
[12] Yue LIU, Qiuming CHENG, Qinglin XIA, Xinqing WANG. The use of evidential belief functions for mineral potential mapping in the Nanling belt, South China[J]. Front. Earth Sci., 2015, 9(2): 342-354.
[13] Huan LI, Dingyi XU, Yan ZHAO. Peatland area change in the southern Altay Mountains over the last twenty years based on GIS and RS analysis[J]. Front. Earth Sci., 2014, 8(4): 558-563.
[14] Maotian LI, Jianzhong GE, Jens KAPPENBERG, Dagmar MUCH, Ohle NINO, Zhongyuan CHEN. Morphodynamic processes of the Elbe River estuary, Germany: the Coriolis effect, tidal asymmetry and human dredging[J]. Front. Earth Sci., 2014, 8(2): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed